Numerical Python

Heuristic Optimization
Question

x = '12345'
z = '67890'

for a in itertools.product(x, z):
 print(' '.join(a))

Which of the following is not printed?

- '1 6'
- '4 6'
- '6 7'
- '5 0'
x = '12345'
z = '67890'

for a in itertools.product(x, y) :
 print('"'.join(a))

Which of the following is not printed?

- '1 6'
- '4 6'
- '6 7'
- '5 0'
Brute-force search of a password:

```python
def check_password( pwd ):
    if pwd == 'pas':
        return True
    else:
        return False

chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
for pair in itertools.product( chars, repeat=3 ):
    pair = ''.join( pair )
    if check_password( pair ):
        print( pair )
```
Brute-force search of a password:

\[2 \times n(\text{alphabet}) + n(\text{digits}) + n(\text{special}) \]
\[= 2 \times 26 + 10 + \{24–32\} \]
\[= \{86–94\} \]

per letter!
Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>86^2</td>
</tr>
<tr>
<td>3</td>
<td>86^3</td>
</tr>
<tr>
<td>4</td>
<td>86^4</td>
</tr>
<tr>
<td>5</td>
<td>86^5</td>
</tr>
<tr>
<td>10</td>
<td>86^{10}</td>
</tr>
<tr>
<td>20</td>
<td>86^{20}</td>
</tr>
</tbody>
</table>
Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>$86^2 = 7396$</td>
</tr>
</tbody>
</table>
Brute-force search

Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>$86^2 = 7396$</td>
</tr>
<tr>
<td>3</td>
<td>$86^3 = 636056$</td>
</tr>
<tr>
<td>4</td>
<td>$86^3 = 54700816$</td>
</tr>
<tr>
<td>5</td>
<td>$86^3 = 4704270176$</td>
</tr>
</tbody>
</table>
Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>$86^2 = 7,396$</td>
</tr>
<tr>
<td>3</td>
<td>$86^3 = 636,056$</td>
</tr>
<tr>
<td>4</td>
<td>$86^3 = 54,700,816$</td>
</tr>
<tr>
<td>5</td>
<td>$86^3 = 4,704,270,176$</td>
</tr>
<tr>
<td>10</td>
<td>$86^{10} = 2.2 \times 10^{19}$</td>
</tr>
<tr>
<td>20</td>
<td>$86^{10} = 4.9 \times 10^{38}$</td>
</tr>
</tbody>
</table>
Brute-force search

If Python can try a password attempt every 1×10^{-7} s, how long does it take to crack a password of length n?

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>8.6×10^{-6} s</td>
</tr>
<tr>
<td>2</td>
<td>7396</td>
<td>7.4×10^{-4} s</td>
</tr>
<tr>
<td>3</td>
<td>636,056</td>
<td>6.4×10^{-2} s</td>
</tr>
<tr>
<td>4</td>
<td>54,700,816</td>
<td>5.4 s</td>
</tr>
<tr>
<td>5</td>
<td>4,704,270,176</td>
<td>470.4 s</td>
</tr>
</tbody>
</table>
Brute-force search

If Python can try a password attempt every 1×10^{-7} s, how long does it take to crack a password of length n?

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>8.6×10^{-6} s</td>
</tr>
<tr>
<td>2</td>
<td>7,396</td>
<td>7.4×10^{-4} s</td>
</tr>
<tr>
<td>3</td>
<td>6,360,056</td>
<td>6.4×10^{-2} s</td>
</tr>
<tr>
<td>4</td>
<td>54,700,816</td>
<td>5.4 s</td>
</tr>
<tr>
<td>5</td>
<td>470,427,0176</td>
<td>470.4 s</td>
</tr>
<tr>
<td>10</td>
<td>2.2×10^{19}</td>
<td>1.9×10^{14} s = 6×10^{6} a</td>
</tr>
</tbody>
</table>
Brute-force search

- If Python can try a password attempt every 1×10^{-7} s, how long does it take to crack a password of length n?

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>8.6×10^{-6} s</td>
</tr>
<tr>
<td>2</td>
<td>7396</td>
<td>7.4×10^{-4} s</td>
</tr>
<tr>
<td>3</td>
<td>636056</td>
<td>6.4×10^{-2} s</td>
</tr>
<tr>
<td>4</td>
<td>54700816</td>
<td>5.4 s</td>
</tr>
<tr>
<td>5</td>
<td>4704270176</td>
<td>470.4 s</td>
</tr>
<tr>
<td>10</td>
<td>2.2×10^{19}</td>
<td>1.9×10^{14} s $= 6 \times 10^{6}$ a</td>
</tr>
<tr>
<td>20</td>
<td>4.9×10^{38}</td>
<td>4.9×10^{31} s</td>
</tr>
</tbody>
</table>
On vacation, you purchase a collection of n souvenirs of varying weight and value. When it comes time to pack, you find that your bag has a weight limit of 50 pounds. What is the best set of items to take on the flight?
Given a function $f(x)$, find $x = x^*$ such that $f(x^*)$ is maximized (or minimized).

The goal is to search the domain for the x^* which yields the optimal $f(x^*)$.

Let’s review our brute-force solution.
import numpy as np
np.random.seed(101)

n = 10
items = list(range(n))
weights = np.random.uniform(size=(n,)) * 50
values = np.random.uniform(size=(n,)) * 100
def f(wts, vals):
 total_weight = 0
 total_value = 0

 for i in range(len(wts)):
 total_weight += wts[i]
 total_value += vals[i]

 if total_weight >= 50:
 return 0
 else:
 return total_value
Brute-Force Solution

```python
import itertools

max_value = 0.0
max_set = None
for i in range(n):
    for set in itertools.combinations(items,i):
        wts = []
        vals = []
        for item in set:
            wts.append( weights[ item ] )
            vals.append( values[ item ] )
        value = f( wts,vals )
        if value > max_value:
            max_value = value
            max_set = set
```
Heuristic Optimization
In many cases, a “good-enough” solution is fine.
In many cases, a “good-enough” solution is fine.

If we have a figure of relative merit, we can classify candidate solutions by how good they are.
In many cases, a “good-enough” solution is fine.
If we have a figure of *relative* merit, we can classify candidate solutions by how good they are.
Heuristic algorithms don’t guarantee the ‘best’ solution, but are often adequate (and the only choice!).
Hill-climbing algorithm

- **Strategy:** Always selecting neighboring candidate solution which improves on this one.

Analogy: Trying to find the highest hill by only taking a step uphill from where you are.

Pitfall: Finding a local optimum instead of the global optimum.
Strategy: Always selecting neighboring candidate solution which improves on this one.
Analogy: Trying to find the highest hill by only taking a step uphill from where you are.
Hill-climbing algorithm

- **Strategy:** Always selecting neighboring candidate solution which improves on this one.
- **Analogy:** Trying to find the highest hill by only taking a step uphill from where you are.
- **Pitfall:** Finding a *local* optimum instead of the global optimum.
Hill-climbing algorithm

- Set up a figure of merit f.
- Select a starting guess x_0.
- Change a feature of the guess.
- If this improves, keep it and cycle.
- If no improvement is possible, terminate.
Example in 1D

\[f(x) = 100 - (x - 5)^2 \quad x \in \{-10, +10\}, \]
Example in 2D

\[f(x, y) = \frac{1}{\sqrt{2x^2 + 2y^2}} \left(\cos^4 x - 2 \cos^2 x \sin^2 y + \sin^4 y \right) \]
Example in 2D

\[f(x, y) = \frac{1}{\sqrt{2x^2 + 2y^2}} \left(\cos^4 x - 2 \cos^2 x \sin^2 y + \sin^4 y \right) \]
Strategy: Choosing at random a candidate solution (sometimes within a constrained space).
Random sampling

- **Strategy:** Choosing at random a candidate solution (sometimes within a constrained space).
- **Analogy:** Picking random heights in the region of a hill, accepting the tallest as the highest.

Falltrap: Without good constraints, missing the optimum value.
Random sampling

- **Strategy:** Choosing at random a candidate solution (sometimes within a constrained space).
- **Analogy:** Picking random heights in the region of a hill, accepting the tallest as the highest.
- **Pitfall:** Without good constraints, missing the optimum value.
Random walk

- **Strategy**: Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.

Analogy: Taking random steps near a hill, but maybe not taking the step if it's worse.

** Pitfall**: Converging slowly, can still miss best candidate solution.

BUT: has a way from getting stuck in local optima.
Random walk

- **Strategy:** Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.
- **Analogy:** Taking random steps near a hill, but maybe not taking the step if it’s worse.
Random walk

- **Strategy:** Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.
- **Analogy:** Taking random steps near a hill, but maybe not taking the step if it’s worse.
- **Pitfall:** Converging slowly, can still miss best candidate solution.
Strategy: Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.

Analogy: Taking random steps near a hill, but maybe not taking the step if it’s worse.

Pitfall: Converging slowly, can still miss best candidate solution. BUT: has a way from getting stuck in local optima.
Random walk algorithm

- Set up a figure of merit f.
- Select a starting guess x_0.
- Change a random feature of the guess.
- If this improves, keep it and cycle.
- If this does not improve, sometimes keep it anyway.
- When number of trials has been reached, terminate.
Example in 2D

\[f(x, y) = \frac{1}{\sqrt{2x^2 + 2y^2}} (\cos^4 x - 2 \cos^2 x \sin^2 y + \sin^4 y) \]
Example

- We require:
 - A problem with relative solution assessment
 - An algorithm to assess solutions
- The password cracking didn’t have the former.
- Let’s revisit the bag-packing algorithm.
Our comparative strategies:

- Brute-force (last lecture)
- Hill-climbing
 - Select heaviest item, then add next heaviest, etc.
 - Select most valuable item, then add next most valuable item, etc.
- Random sampling
- Random walk: sample randomly, then iteratively allow change
import numpy as np
import matplotlib.pyplot as plt
import itertools

n = 10
items = list(range(n))
weights = np.random.uniform(size=(n,)) * 50
values = np.random.uniform(size=(n,)) * 100
def f(wts, vals):
 total_weight = 0
 total_value = 0

 for i in range(len(wts)):
 total_weight += wts[i]
 total_value += vals[i]

 if total_weight >= 50:
 return 0
 else:
 return total_value
Tracking cases

```python
max_value = 0.0
max_set = None
lists = []
for i in range(n):
    for set in itertools.combinations(items, i):
        wts = []
        vals = []
        for item in set:
            wts.append(weights[item])
            vals.append(values[item])
        value = f(wts, vals)
        lists.append((wts, value))
        if value > 0:
            print(value, wts)
        if value > max_value:
            max_value = value
            max_set = set
```
array = np.array(lists)
plt.plot(array[:,1], 'b.')
plt.xlim((0, len(lists)))
plt.show()
Brute-force search

```python
import itertools

max_value = 0.0
max_set = None
for i in range(n):
    for set in itertools.combinations(items, i):
        wts = []
        vals = []
        for item in set:
            wts.append(weights[item])
            vals.append(values[item])
        value = f(wts, vals)
        if value > max_value:
            max_value = value
            max_set = set
```
Hill-climbing search

max_wt = 50.0

wts_orig = wts[:]
vals_orig = vals[:]

best_vals = []
best_wts = []
best_vals.append(max(vals))
best_wts.append(wts[vals.index(max(vals))])
wts.remove(wts[vals.index(max(vals))])
vals.remove(max(vals))
Hill-climbing search

while sum(best_wts) + wts[vals.index(max(vals))] < max_wt:
 best_vals.append(max(vals))
 best_wts.append(wts[vals.index(max(vals))])
 wts.remove(wts[vals.index(max(vals))])
 vals.remove(max(vals))

wts = wts_orig[:]
vals = vals_orig[:]
try a configuration at random
alter it at random with small likelihood of getting worse
for t in range(1000):
 # two possible moves: adding or removing
 if f(next_wts,next_vals) > f(trial_wts,trial_vals):
 # if improvement, accept the change
 else:
 # if no improvement, *maybe* accept the change
 # if all-time best, track it
(see random-walk.py)
Code Performance Redux
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The `timeit` module provides three ways to time your code:

- **Interpreter:**
  ```python
  timeit.timeit('func( n )', number=10000)
  ```

- **Command line:**
  ```bash
  python3 -m timeit 'code'
  ```

- **Notebook:**
  ```python
  %timeit func( n )
  ```

These run your code many times and return an average time to completion.
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The `timeit` module provides three ways to time your code:

- **Interpreter:** `timeit.timeit('func(n)', number=10000)`
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The `timeit` module provides three ways to time your code:

- **Interpreter:** `timeit.timeit('func(n)', number=10000)`
- **Command line:** `python3 -m timeit 'code'`
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The `timeit` module provides three ways to time your code:

- **Interpreter:** `timeit.timeit('func(n)', number=10000)`
- **Command line:** `python3 -m timeit 'code'`
- **Notebook:** `%timeit func(n)` (this is easiest)

These run your code many times and return an average time to completion.
make sure to disable the plots first!

%timeit %run brute-force.py
%timeit %run hill-climbing.py
%timeit %run random-walk.py
Comparing Results
arrays don’t play nicely with comparisons:

```python
one = np.ones((5,))
if one == 1:
    print('setup correct')
```

ValueError: The truth value of an array with more than one element is ambiguous. Which element is compared? It's ambiguous.
arrays don’t play nicely with comparisons:

```python
one = np.ones((5,))
if one == 1:
    print('setup correct')
ValueError: The truth value of an array with more than one element is ambiguous.
```
Comparing results

- arrays don’t play nicely with comparisons:
  ```python
  one = np.ones( ( 5, ) )
  if one == 1:
    print( 'setup correct' )
  ValueError: The truth value of an array with more than one element is ambiguous.
  ```
- Which element is compared? It’s ambiguous.
Arrays have the built-in methods `any` and `all`:

```python
one = np.ones( ( 5, ) )
if ( one == 1 ).all():
    print( 'setup is all ones' )
```

```python
domain = np.linspace( 0,10,11 )
if ( domain == 1 ).any():
    print( 'setup contains one' )
```
arrays have the built-in methods any and all:

```python
one = np.ones( ( 5, ) )
if ( one == 1 ).all():
    print( 'setup is all ones' )

domain = np.linspace( 0,10,11 )
if ( domain == 1 ).any():
    print( 'setup contains one' )
```