Administrivia
Homework #11 is due Monday, Nov. 28.
Homework #12 will be due Wednesday, Dec. 7.
Lab #13 is the week after the break, then no lab the last week.
Final examination will be held Dec. 16 at 8:00 a.m. (two hours).
Warmup Quiz
import numpy as np
tmax = 10.0
dt = 0.01
nt = int(tmax/dt) + 1
x = np.zeros((nt,))
for i in range(0,dt):
 vx = x[i-1] / np.sin(i)
 x[i+1] = x[i] + vx * dt

Which uncaught error will halt this code?

A ZeroDivisionError
B TypeError
C SyntaxError
D IndexError
import numpy as np
tmax = 10.0
dt = 0.01
nt = int(tmax/dt) + 1
x = np.zeros((nt,))
for i in range(0,dt):
 vx = x[i-1] / np.sin(i)
 x[i+1] = x[i] + vx * dt

Which uncaught error will halt this code?

A ZeroDivisionError
B TypeError
C SyntaxError
D IndexError
x = np.ones(10)
for i in range(10):
 try:
 ???
 except:
 print('Error on step %d.' % err)
 continue

Which of the following candidates for ??? would not produce an error message?

A x += x[i+1]
B x[i] /= 0
C x[-i-1] = sum(x[:i])
D x[10-i] = sum(x[:i])
Question #2

```python
x = np.ones(10)
for i in range(10):
    try:
        ???
    except:
        print('Error on step %d.' % err)
        continue
```

Which of the following candidates for `??` would **not** produce any error message?

A. `x += x[i+1]` **index error**
B. `x[i] /= 0` *(surprise!)*
C. `x[-i-1] = sum(x[:i])` *(surprise!)*
D. `x[10-i] = sum(x[:i])` **index error**
Common exceptions

- SyntaxError
- NameError
- TypeError
- ValueError
- IOError
- IndexError
- KeyError
- ZeroDivisionError
- IndentationError
- Exception
Why MATLAB?

- Designed for engineering.
- Excellent documentation: MATLAB Central.
- Ideal applications:
 - Linear algebra
 - Control dynamics
 - Numerical analysis
 - Image processing
- Many toolboxes available.
What is MATLAB?

- Programming language + environment.
- Proprietary, owned and maintained by MathWorks.
- Dates from late 1970s, under active development.
- Was an influence on NumPy/MPL, so will be familiar.
Basics

- Literals, variables, operators

 \[4 \times 3 \]

 Expressions

 \[a = 3 \times 2 \]
 \[b = 1 + a \]

 Semicolon suppresses output (mutes): ;

 \[b = b + 2; \]

 ans is default result.

 \[a / 4 \]

 disp displays the value only.

 disp(ans);
MATLAB implements:
- integers
- floating-point numbers
- complex numbers

in 8-, 16-, 32-, and 64-bit versions.

`whos` shows type, value of all variables in workspace.
Arrays are the fundamental type in MATLAB:

```
a = [ 1 2 3 ];
b = a( 1 );
```

MATLAB counts from one, not zero!
More dimensional arrays use semicolons to separate rows:

A = [1 2 3 ; 4 5 6];

Arrays are indexed using parentheses and commas:

a = A(1,2);

Helper functions are available:

B = ones(3,3) + eye(3,3) + zeros(3,3);
Which of the following will produce this array?

A: \[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 2
\end{bmatrix}
\]

B: \[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 2
\end{bmatrix}
\]

C: \[
\begin{bmatrix}
1 & 2 \\
1 & 2 \\
1 & 2
\end{bmatrix}
\]

D: \[
\begin{bmatrix}
1 & 2 \\
1 & 2 \\
1 & 2
\end{bmatrix}
\]

E: \[
\begin{bmatrix}
\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}
\end{bmatrix}
\]
Which of the following will produce this array?

A \[\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \]

B \[\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \]

C \[\begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \]

D \[\begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \]

E \[\begin{bmatrix} [1 & 1 & 1] \\ [2 & 2 & 2] \end{bmatrix} \]
\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \]

Which of the following will access 4 in this array?

A) \(A(1,0) \)
B) \(A[2,1] \)
C) \(A(2,1) \)
D) \(A(1)(0) \)
Question

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \]

Which of the following will access 4 in this array?

A \(A(1,0) \)
B \(A[2,1] \)
C \(A(2,1) \)
D \(A(1)(0) \)
% basic mathematics:
A = (ones(3,3) + 1) / 2
B = sin(ones(3,3) * pi)
C = B' % transpose with '

% matrix multiplication:
D = eye(3,4) * ones(4,5) * pi

\[
\begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix}
\]

Which of the following will produce this array?

A. \(3 \cdot \text{ones}(2, 2) - 2 \cdot \text{eye}(2, 2)\)
B. \(2 \cdot \text{ones}(2, 2) + \text{eye}(2, 2)\)
C. \(3 \cdot \text{ones}(2, 2) - \text{eye}(2, 2)\)
D. \(\text{ones}(2, 2) + \text{eye}(2, 2)\)
Which of the following will produce this array?

A \(3 \times \text{ones}(2,2) - 2 \times \text{eye}(2,2) \)
B \(2 \times \text{ones}(2,2) + \text{eye}(2,2) \)
C \(3 \times \text{ones}(2,2) - \text{eye}(2,2) \)
D \(\text{ones}(2,2) + \text{eye}(2,2) \)
% concatenating arrays
A = [eye(3,4), eye(3,5);
 ones(2,4), ones(2,5)]
How can we produce this array?

A \[\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \]

B \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \]

C \[\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \]

D \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \]
How can we produce this array?

A \[
\begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

B \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]

C \[
\begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

D \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]
MATLAB uses `.m` files for two purposes: scripts and functions.

Comments are indicated as follows:

```plaintext
% this is a comment
{%
   this is a block comment
%
```
Use the built-in editor to create these.
Make sure you have the correct working directory.
Scripts contain regular commands in order of execution.
Functions

- Functions must be located in a file of the same name as the function.

```matlab
function [ output variables ] = function_name( input variables )
% ...
end
```

- No explicit `return` statements—rely on values in output variable list.
\[T_F = \frac{180}{100} T_C + 32 \]

File TempC2F.m:

```matlab
function \[ Tf \] = TempC2F( Tc )
    Tf = Tc * ( 180/100 ) + 32;
end
```
Strings

- Indicated with single quotes (only!).

```matlab
s = 'XFEM';
```

- Print formatted strings with `sprintf`:

```matlab
sprintf( '%f %f', sin(pi/3), cos(pi/4) );
```
Matrix v. element operations

- “Matrix dimensions must agree.”
- It is sometimes necessary to distinguish elementwise operations and matrix operations.

```matlab
A = 2 * ones( 2,2 )
B = A .* eye( 2,2 )
C = A * eye( 2,2 )
```

- These are distinguished by a dot . in front of the operator.
- We won’t emphasize this but frequently you must distinguish.