Coursework
exam3 3/27–3/29
hw07 TBA, probably due 4/7
Course Map
Course Map

- **Computational Thinking**: types, operators, expressions
- **Data Processing**: lists, dictionaries, loops
- **Numerical Simulation**: arrays, plotting, RNGs
- **Problem Solving**: equation solving, optimization ★
- **Raw Data & Modeling**: MATLAB, statistics, curve fitting
Equations on Computers
How do we represent equations on computers?
We often just compose a function and write some expressions, or maybe have a series.
In other words, we are concerned with float representations—we want numbers out of them.
Many times we represent the function as a pair of arrays, x and y (like for plotting).
We can do so symbolically as well (see HPL on SymPy), but won’t in 101.
Suppose you wish to evaluate the function:

\[y = a \sin^3 x + b \sin^2 x + c \sin x + d \]
Suppose you wish to evaluate the function:

\[y = a \sin^3 x + b \sin^2 x + c \sin x + d \]

On a computer, which way is better?

\[y = a*\sin(x)**3 + b*\sin(x)**2 + c*\sin(x) + d \]

\[t = \sin(x) \]

\[y = a*t**3 + b*t**2 + c*t + d \]
Suppose you wish to evaluate the function:

\[y = a \sin^3 x + b \sin^2 x + c \sin x + d \]

On a computer, which way is better?

\[y = a\sin(x)^{**3} + b\sin(x)^{**2} + c\sin(x) + d \]
\[t = \sin(x) \]
\[y = a*t^{**3} + b*t^{**2} + c*t + d \]

The first way takes three times longer!
What about calculating π using the Monte Carlo method?
Let's say, versus a series solution?
import numpy.random as npr

def mc_pi(n):
 xy = npr.rand(n,2) * 2 - 1
 n_circle = 0
 for pair in xy:
 if (pair[0]**2 + pair[1]**2)**0.5 < 1.0:
 n_circle += 1
 estimate = n_circle / n * 4.0
 return estimate
def series_pi(n):
 result = 0
 for k in range(1, n):
 term = ((-1) ** (k+1)) / (2 * k - 1)
 result += term
 return result*4
Which way is more efficient computationally?
Which way is more efficient computationally?

The series solution is much better, and other better ways may exist.

Later we’ll learn how to quantify this (probably lec19).
How do you calculate the value of \(\sin x \) or \(\exp x \)?
How do you calculate the value of $\sin x$ or $\exp x$?

$$\exp(-x) = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + ...$$

$$\exp(-x) = \frac{x^0}{0!} - \frac{x^1}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + ...$$
How do you calculate the value of \(\sin x \) or \(\exp x \)?

\[
\exp(-x) = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \ldots
\]

\[
= \frac{x^0}{0!} - \frac{x^1}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots
\]

This series is well-behaved, but...
Intermediate terms can behave like:

\[
\frac{10^5}{5!} = \frac{100,000}{120} = 833.333
\]
Intermediate terms can behave like:

\[\frac{10^5}{5!} = \frac{100,000}{120} = 833.333 \]

or

\[\frac{10^{12}}{12!} = \frac{1,000,000,000,000}{479,001,600} = 2,087.675 \]

Very large numbers result, leading to inefficient calculation and possible numerical error.

So what can we do?
In this case, the solution is to exploit a property of e, namely

$$e^x = \frac{1}{e^{-x}}$$

and thus use quantities less than zero for x.
What about trying to find a “better” way to solve a problem?
Example: collinearity of three points
If you find this sort of analysis interesting, I recommend:

- CS 450, TAM 470
- Forman Acton’s marvelous *Numerical Methods that Work* (1970)
- Abramowitz & Stegun, *Handbook of Mathematical Functions* (1964)
Suppose that you wish to evaluate the function:

\[t(x) = a \exp(3x) + b \exp(2x) + c \exp(x). \]

On a computer, which is better?

A. \[t = a*\exp(3*x) + b*\sin(2*x) + c*\sin(x) \]

B. \[z = \exp(x) \]
\[t = a*z**3 + b*z**2 + c*z + d \]
Suppose that you wish to evaluate the function:

\[t(x) = a \exp(3x) + b \exp(2x) + c \exp(x). \]

On a computer, which is better?

A \(t = a*\exp(3*x) + b*\sin(2*x) + c*\sin(x) \)

B \(z = \exp(x) \quad t = a*z**3 + b*z**2 + c*z + d \)

★
Solving Equations in x
Next, let’s consider how to find a specific solution to an equation, a value of x for which $f(x)$ has a desired property.
Next, let’s consider how to find a specific solution to an equation, a value of x for which $f(x)$ has a desired property.

The easiest way is to plot LHS v. RHS and find the crossover point:
$x^2 + 5x - (2x^2 - 3) = -2x^2 - x$

$x**2 + 5*x - (2*x**2 - 3) == -2*x**2 - x$
\[x^2 + 5x - (2x^2 - 3) = -2x^2 - x \]

\[x^{**2} + 5*x - (2*x^{**2} - 3) == -2*x^{**2} - x \]

\[x = \text{np.linspace}(-10,10,1001) \]

\[\text{lhs} = x^{**2} + 5*x - (2*x^{**2} - 3) \]

\[\text{rhs} = -2*x^{**2} - x \]

\[\text{plt.plot}(x,\text{lhs},'r' , x,\text{rhs},'b') \]

\[\text{plt.plot}(x,\text{lhs-rhs},'g') \]
\[x^2 + 5x - (2x^2 - 3) = -2x^2 - x \]

\[x^{**2} + 5x - (2*x^{**2} - 3) == -2*x^{**2} - x \]

\[x = \text{np.linspace}(-10,10,1001) \]

\[\text{lhs} = x^{**2} + 5x - (2*x^{**2} - 3) \]

\[\text{rhs} = -2*x^{**2} - x \]

\[\text{plt.plot}(x,\text{lhs},'r', x,\text{rhs},'b') \]

\[\text{plt.plot}(x,\text{lhs-rhs},'g') \]

❖ This works, but we need something better than eyeballing it.
Newton’s method uses the function and its derivative to locate the x of the zero, x^*. The trick, of course, is that you need the derivative.
def dfdx(f,x,h=1e-3):
 return (f(x+h) - f(x)) / h

def newton(f,x0,tol=1e-3):
 d = abs(0 - f(x0))
 while d > tol:
 x0 = x0 - f(x0) / dfdx(f,x0)
 d = abs(0 - f(x0))
 return (x0,f(x0))
Equations

\[\cos x + 2 = x^3 - x^2 \]

def eqn(x):
 return (np.cos(x) + 2) - (x**3 - x**2)
The preceding code works okay, but a full implementation is available as `scipy.optimize.newton(f, x0)`.
We can also find minima using `scipy.optimize.fmin(f, x0)`.
We can also find minima using `scipy.optimize.fmin(f,x0)`.

This requires you to be clever in preparing f: you may have to negate or manipulate your function.
On vacation, you purchase a range of n souvenirs of varying weight and value. When it comes time to pack, you find that your bag has a weight limit of 50 pounds. What is the best set of items to take on the flight?
Next steps
Next steps

- exam3 3/27–3/29
- hw07 TBA, probably due 4/7
- No quiz this time—study for exam3 instead!
- Read for the next class