Numerical Simulation

Optimization II
Coursework
hw07 due 4/7
Later homework schedule posted.
Exam Review
import numpy as np
def mc_int(f,a,b,n):
 if f == abs:
 return 0.5
 if f == np.sin:
 return 0.0
 # et cetera...
Optimization Redux
x = '12345'
z = '67890'

for a in itertools.product(x, y):
 print(' '.join(a))

Which of the following is **not** printed?

A '1 6'
B '4 6'
C '6 7'
D '5 0'
x = '12345'
z = '67890'

for a in itertools.product(x, y):
 print(' '.join(a))

Which of the following is *not* printed?

A '1 6'
B '4 6'
C '6 7' ✓
D '5 0'
Brute-Force Search
Brute-force search

- Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.
Brute-force search

Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>$86^2 = 7,396$</td>
</tr>
</tbody>
</table>
Brute-force search

Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>$86^2 = 7396$</td>
</tr>
<tr>
<td>3</td>
<td>$86^3 = 636056$</td>
</tr>
<tr>
<td>4</td>
<td>$86^3 = 54700816$</td>
</tr>
<tr>
<td>5</td>
<td>$86^3 = 4704270176$</td>
</tr>
</tbody>
</table>
Brute-force search

- Assume that a password can contain characters from the alphabet (upper- and lower-case); digits; and a selection of special characters (ampersand, dash): 86 characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>$86^2 = 7396$</td>
</tr>
<tr>
<td>3</td>
<td>$86^3 = 636056$</td>
</tr>
<tr>
<td>4</td>
<td>$86^3 = 54700816$</td>
</tr>
<tr>
<td>5</td>
<td>$86^3 = 4704270176$</td>
</tr>
<tr>
<td>10</td>
<td>$86^{10} = 2.2 \times 10^{19}$</td>
</tr>
<tr>
<td>20</td>
<td>$86^{10} = 4.9 \times 10^{38}$</td>
</tr>
</tbody>
</table>
Brute-force search

- If Python can try a password attempt every 1×10^{-7} s, how long does it take to crack a password of length n?

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>8.6×10^{-6} s</td>
</tr>
<tr>
<td>2</td>
<td>7396</td>
<td>7.4×10^{-4} s</td>
</tr>
<tr>
<td>3</td>
<td>636056</td>
<td>6.4×10^{-2} s</td>
</tr>
<tr>
<td>4</td>
<td>54700816</td>
<td>5.4 s</td>
</tr>
<tr>
<td>5</td>
<td>4704270176</td>
<td>470.4 s</td>
</tr>
</tbody>
</table>
If Python can try a password attempt every 1×10^{-7} s, how long does it take to crack a password of length n?

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>8.6×10^{-6} s</td>
</tr>
<tr>
<td>2</td>
<td>7 396</td>
<td>7.4×10^{-4} s</td>
</tr>
<tr>
<td>3</td>
<td>636 056</td>
<td>6.4×10^{-2} s</td>
</tr>
<tr>
<td>4</td>
<td>54 700 816</td>
<td>5.4 s</td>
</tr>
<tr>
<td>5</td>
<td>4 704 270 176</td>
<td>470.4 s</td>
</tr>
<tr>
<td>10</td>
<td>2.2×10^{19}</td>
<td>1.9×10^{14} s = 6×10^6 a</td>
</tr>
</tbody>
</table>
Brute-force search

- If Python can try a password attempt every 1×10^{-7} s, how long does it take to crack a password of length n?

<table>
<thead>
<tr>
<th>Characters</th>
<th>Search Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>8.6×10^{-6} s</td>
</tr>
<tr>
<td>2</td>
<td>7396</td>
<td>7.4×10^{-4} s</td>
</tr>
<tr>
<td>3</td>
<td>636056</td>
<td>6.4×10^{-2} s</td>
</tr>
<tr>
<td>4</td>
<td>54700816</td>
<td>5.4 s</td>
</tr>
<tr>
<td>5</td>
<td>4704270176</td>
<td>470.4 s</td>
</tr>
<tr>
<td>10</td>
<td>2.2×10^{19}</td>
<td>1.9×10^{14} s = 6×10^{6} a</td>
</tr>
<tr>
<td>20</td>
<td>4.9×10^{38}</td>
<td>4.9×10^{31} s</td>
</tr>
</tbody>
</table>
In many cases, a “good-enough” solution is fine.
In many cases, a “good-enough” solution is fine.

If we have a figure of relative merit, we can classify candidate solutions by how good they are.
In many cases, a “good-enough” solution is fine.

If we have a figure of relative merit, we can classify candidate solutions by how good they are.

Heuristic algorithms don’t guarantee the ‘best’ solution, but are often adequate (and the only choice!).
Hill-climbing algorithm

- **Strategy**: Always selecting neighboring candidate solution which improves on this one.

 - Analogy: Trying to find the highest hill by only taking a step uphill from where you are.

 - Pitfall: Finding a local optimum instead of the global optimum.
Hill-climbing algorithm

- **Strategy**: Always selecting neighboring candidate solution which improves on this one.
- **Analogy**: Trying to find the highest hill by only taking a step uphill from where you are.

Pitfall: Finding a local optimum instead of the global optimum.
Hill-climbing algorithm

- **Strategy:** Always selecting neighboring candidate solution which improves on this one.
- **Analogy:** Trying to find the highest hill by only taking a step uphill from where you are.
- **Pitfall:** Finding a local optimum instead of the global optimum.
Strategy: Tweaking our current solution by changing all elements to improve the result. Picking the candidate solution with the greatest improvement.
Steepest ascent algorithm

- **Strategy:** Tweaking our current solution by changing all elements to improve the result. Picking the candidate solution with the greatest improvement.

- **Analogy:** Trying to find the highest hill by always taking the **steepest step uphill** from where you are.

Pitfall: Finding a local optimum instead of the global optimum.
Steepest ascent algorithm

- **Strategy**: Tweaking our current solution by changing all elements to improve the result. Picking the candidate solution with the greatest improvement.

- **Analogy**: Trying to find the highest hill by always taking the steepest step uphill from where you are.

- **Pitfall**: Finding a local optimum instead of the global optimum.
Random sampling

- **Strategy:** Choosing at random a candidate solution (sometimes within a constrained space).

Analogy: Picking random heights in the region of a hill, accepting the tallest as the highest.

Fall: Without good constraints, missing the optimum value.
Random sampling

- **Strategy:** Choosing at random a candidate solution (sometimes within a constrained space).
- **Analogy:** Picking random heights in the region of a hill, accepting the tallest as the highest.
Random sampling

- **Strategy:** Choosing at random a candidate solution (sometimes within a constrained space).
- **Analogy:** Picking random heights in the region of a hill, accepting the tallest as the highest.
- **Pitfall:** Without good constraints, missing the optimum value.
Strategy: Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.
Random walk

- **Strategy:** Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.
- **Analogy:** Taking random steps near a hill, but maybe not taking the step if it’s worse.
Strategy: Tweaking the current candidate solution at random, and possibly rejecting the solution if worse.

Analogy: Taking random steps near a hill, but maybe not taking the step if it’s worse.

Pitfall: Converging slowly, can still miss best candidate solution. BUT: has a way from getting stuck in local optima.
We require:
- A problem with relative solution assessment
- An algorithm to assess solutions
- The password cracking didn’t have the former.
- Let’s revisit the bag-packing algorithm.
Example

- Our comparative strategies:
 - Brute-force (last lecture)
 - Hill-climbing
Example

- Our comparative strategies:
 - Brute-force (last lecture)
 - Hill-climbing
 - Select heaviest item, then add next heaviest, etc.
Our comparative strategies:
- Brute-force (last lecture)
- Hill-climbing
 - Select heaviest item, then add next heaviest, etc.
 - Select most valuable item, then add next most valuable item, etc.
Our comparative strategies:

- **Brute-force (last lecture)**
- **Hill-climbing**
 - Select heaviest item, then add next heaviest, etc.
 - Select most valuable item, then add next most valuable item, etc.
- **Random sampling**
Our comparative strategies:
- Brute-force (last lecture)
- Hill-climbing
 - Select heaviest item, then add next heaviest, etc.
 - Select most valuable item, then add next most valuable item, etc.
- Random sampling
- Random walk: sample randomly, then iteratively allow change
import numpy as np
import matplotlib.pyplot as plt
import itertools

n = 10
items = list(range(n))
weights = np.random.uniform(size=(n,)) * 50
values = np.random.uniform(size=(n,)) * 100
```python
def f(wts, vals):
    total_weight = 0
    total_value = 0

    for i in range(len(wts)):
        total_weight += wts[i]
        total_value += vals[i]

    if total_weight >= 50:
        return 0
    else:
        return total_value
```
max_value = 0.0
max_set = None
lists = []
for i in range(n):
 for set in itertools.combinations(items,i):
 wts = []
 vals = []
 for item in set:
 wts.append(weights[item])
 vals.append(values[item])
 value = f(wts,vals)
 lists.append((wts, value))
 if value > 0:
 print(value, wts)
 if value > max_value:
 max_value = value
 max_set = set
array = np.array(lists)
plt.plot(array[:,1], 'b.')
plt.xlim((0, len(lists)))
plt.show()
import itertools

max_value = 0.0
max_set = None

for i in range(n):
 for set in itertools.combinations(items, i):
 wts = []
 vals = []
 for item in set:
 wts.append(weights[item])
 vals.append(values[item])
 value = f(wts, vals)
 if value > max_value:
 max_value = value
 max_set = set
Hill-climbing search

max_wt = 50.0

wts_orig = wts[:]
vals_orig = vals[:]

best_vals = []
best_wts = []
best_vals.append(max(vals))
best_wts.append(wts[vals.index(max(vals))])
wts.remove(wts[vals.index(max(vals))])
vals.remove(max(vals))
while sum(best_wts) + wts[vals.index(max(vals))] < max_wt:
 best_vals.append(max(vals))
 best_wts.append(wts[vals.index(max(vals))])
 wts.remove(wts[vals.index(max(vals))])
 vals.remove(max(vals))

wts = wts_orig[:]
vals = vals_orig[:]

Random walk

try a configuration at random
alter it at random with small likelihood of getting worse
for t in range(1000):
 # two possible moves: adding or removing
 if f(next_wts,next_vals) > f(trial_wts,trial_vals):
 # if improvement, accept the change
 else:
 # if no improvement, *maybe* accept the change
 # if all-time best, track it
(see random-walk.py)
Code Performance
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The `timeit` module provides three ways to time your code:

- **Interpreter:**
  ```python
  timeit.timeit('func(n)', number=10000)
  ```

- **Command line:**
  ```sh
  python3 -m timeit 'code'
  ```

- **Notebook:**
 `%timeit func(n)` (this is easiest)

These run your code many times and return an average time to completion.
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The timeit module provides three ways to time your code:

- Interpreter: `timeit.timeit('func(n)', number=10000)`
In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).

The `timeit` module provides three ways to time your code:

- **Interpreter:** `timeit.timeit('func(n)', number=10000)`
- **Command line:** `python3 -m timeit 'code'`
Code performance

- In order to compare algorithms, we need a way to measure code run time (called “wallclock time”).
- The `timeit` module provides three ways to time your code:
 - **Interpreter:** `timeit.timeit('func(n)', number=10000)`
 - **Command line:** `python3 -m timeit 'code'`
 - **Notebook:** `%timeit func(n)` (this is easiest)
In order to compare algorithms, we need a way to measure code run time (called "wallclock time").

The `timeit` module provides three ways to time your code:

- **Interpreter:** `timeit.timeit('func(n)', number=10000)`
- **Command line:** `python3 -m timeit 'code'`
- **Notebook:** `%timeit func(n)` (this is easiest)

These run your code many times and return an average time to completion.
Fibonacci sequence

\[F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad F_1 = F_2 = 1 \]

1 1 2 3 5 8 13 21 34 55 \ldots
Fibonacci sequence

\[F_n = F_{n-1} + F_{n-2} \quad \text{with} \quad F_1 = F_2 = 1 \]

\[1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13 \ 21 \ 34 \ 55 \ldots \]

\[F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{2}{1+\sqrt{5}}\right)^n}{\sqrt{5} + \frac{1}{2}} \]
def fib_a(n):
 sqrt_5 = 5**0.5;
 p = (1 + sqrt_5) / 2;
 q = 1 / p;
 return int((p**n + q**n) / sqrt_5 + 0.5)
def fib_r(n):
 if n == 1 or n == 2:
 return 1
 else:
 return fib_r(n-1) + fib_r(n-2)
Comparison

%timeit fib_a(12)
%timeit fib_r(12)

On my machine, \texttt{fib_a} is 55\% faster than \texttt{fib_r} for \(n = 12\). (Will this performance get better or worse for larger \(n\)?)
%timeit fib_a(12)
%timeit fib_r(12)

On my machine, \texttt{fib}_a is $55 \times$ faster than \texttt{fib}_r for $n = 12$. (Will this performance get better or worse for larger n?)
Comparing Results
arrays don’t play nicely with comparisons:

```python
one = np.ones( ( 5, )
if one == 1:
    print( 'setup correct' )
```
arrays don’t play nicely with comparisons:

```python
one = np.ones((5,))
if one == 1:
    print('setup correct')

ValueError: The truth value of an array with more than one element is ambiguous.
```
Arrays don’t play nicely with comparisons:

```python
one = np.ones( ( 5, ) )
if one == 1:
    print( 'setup correct' )

ValueError: The truth value of an array with more than one element is ambiguous.

Which element is compared? It’s ambiguous.
arrays have the built-in methods any and all:
one = np.ones( ( 5, ) )
if one.all() == 1:
    print( 'setup correct' )
arrays have the built-in methods any and all:
```
one = np.ones((5,))
if one.all() == 1:
 print('setup correct')

domain = np.linspace(0, 10, 11)
if domain.any() == 1:
 print('setup contains one')
```
Next steps
Next steps

- exam3 3/27–3/29
- hw07 due 4/7