
3

Errors in computation; where do they come from?

L. Olson

September 1, 2015

Department of Computer Science

University of Illinois at Urbana-Champaign

1

objectives

• look at floating point representation in its basic form

• expose errors of a different form: rounding error

• highlight IEEE-754 standard

2

why this is important:

• Errors come in two forms: truncation error and rounding error

• we always have them . . .

• case study: Intel

• our jobs as developers: reduce impact

3

example: calculating x = x + 0.1

4

next: floating point numbers

• We’re familiar with base 10 representation of numbers:

1234 = 4× 100 + 3× 101 + 2× 102 + 1× 103

and

.1234 = 1× 10−1 + 2× 10−2 + 3× 10−3 + 4× 10−4

• we write 1234.1234 as an integer part and a fractional part:

a3a2a1a0.b1b2b3b4

• For some (even simple) numbers, there may be an infinite number of

digits to the right:

π = 3.14159 . . .

1/9 = 0.11111 . . .
√

2 = 1.41421 . . .

5

other bases

• So far, we have just base 10. What about base β?

• binary (β = 2), octal (β = 8), hexadecimal (β = 16), etc

• In the β-system we have

(an . . . a2a1a0.b1b2b3b4 . . .)β =
n∑

k=0

akβ
k +

∞∑
k=0

bkβ
−k

6

integer conversion

An algorithm to compute the base 2 representation of a base 10 integer

(N)10 = (ajaj−1 . . . a2a0)2

= aj · 2j + · · ·+ a1 · 21 + a0 · 20

Compute (N)10/2 = Q + R/2:

N

2
= aj · 2j−1 + · · ·+ a1 · 20︸ ︷︷ ︸

=Q

+
a0

2︸︷︷︸
=R/2

Example

Example: compute (11)10 base 2

11/2 = 5R1 ⇒ a0 = 1

5/2 = 2R1 ⇒ a1 = 1

2/2 = 1R0 ⇒ a2 = 0

1/2 = 0R1 ⇒ a3 = 1

So (11)10 = (1011)2

7

the other way...

Convert a base-2 number to base-10:

(11 000 101)2

= 1× 27 + 1× 26 + 0× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 1 + 2(0 + 2(1 + 2(0 + 2(0 + 2(0 + 2(1 + 2(1)))))))

= 197

8

converting fractions

• straight forward way is not easy

• goal: for x ∈ [0, 1] write

x = 0.b1b2b3b4 · · · =
∞∑
k=1

ckβ
−k = (0.c1c2c3 . . .)β

• β(x) = (c1.c2c3c4 . . .)β

• multiplication by β in base-β only shifts the radix

9

fraction algorithm

An algorithm to compute the binary representation of a fraction x :

x = 0.b1b2b3b4 . . .

= b1 · 2−1 + . . .

Multiply x by 2. The integer part of 2x is b1

2x = b1 · 20 + b2 · 2−1 + b3 · 2−2 + . . .

Example

Example:Compute the binary representation of 0.625

2 · 0.625 = 1.25 ⇒ b−1 = 1

2 · 0.25 = 0.5 ⇒ b−2 = 0

2 · 0.5 = 1.0 ⇒ b−3 = 1

So (0.625)10 = (0.101)2

10

a problem with precision

1 r0 = x

2 for k = 1, 2, . . . ,m

3 if rk−1 ≥ 2−k

4 bk = 1

5 rk = rk−1 − 2−k

6 else

7 bk = 0

8 end

9 end

k 2−k bk rk = rk−1 − bk2−k

0 0.8125

1 0.5 1 0.3125

2 0.25 1 0.0625

3 0.125 0 0.0625

4 0.0625 1 0.0000

11

binary fraction example

12

a problem with precision

For other numbers, such as 1
5 = 0.2, an infinite length is needed.

0.2 → .0011 0011 0011 . . .

So 0.2 is stored just fine in base-10, but needs infinite number of digits in

base-2

!!!

This is roundoff error in its basic form...

13

intel

14

intel

15

intel

16

intel timeline

June 1994 Intel engineers discover the division error. Managers

decide the error will not impact many people. Keep the

issue internal.

June 1994 Dr Nicely at Lynchburg College notices computation

problems

Oct 19, 1994 After months of testing, Nicely confirms that other errors

are not the cause. The problem is in the Intel Processor.

Oct 24, 1994 Nicely contacts Intel. Intel duplicates error.

Oct 30, 1994 After no action from Intel, Nicely sends an email

17

intel timeline

FROM: Dr. Thomas R. Nicely

Professor of Mathematics

Lynchburg College

1501 Lakeside Drive

Lynchburg, Virginia 24501-3199

Phone: 804-522-8374

Fax: 804-522-8499

Internet: nicely@acavax.lynchburg.edu

TO: Whom it may concern

RE: Bug in the Pentium FPU

DATE: 30 October 1994

It appears that there is a bug in the floating point unit

(numeric coprocessor) of many, and perhaps all, Pentium

processors.

In short, the Pentium FPU is returning erroneous values

for certain division operations. For example,

0001/824633702441.0

is calculated incorrectly (all digits beyond the eighth

significant digit are in error). This can be verified in

compiled code, an ordinary spreadsheet such as Quattro Pro

or Excel, or even the Windows calculator (use the

scientific mode), by computing

00(824633702441.0)*(1/824633702441.0),

which should equal 1 exactly (within some extremely small

rounding error; in general, coprocessor results should

contain 19 significant decimal digits). However, the

Pentiums tested return

0000.999999996274709702

.

.

.

18

intel timeline

Nov 1, 1994 Software company Phar Lap Software receives Nicely’s

email. Sends to colleagues at Microsoft, Borland,

Watcom, etc. decide the error will not impact many

people. Keep the issue internal.

Nov 2, 1994 Email with description goes global.

Nov 15, 1994 USC reverse-engineers the chip to expose the problem.

Intel still denies a problem. Stock falls.

Nov 22, 1994 CNN Moneyline interviews Intel. Says the problem is

minor.

Nov 23, 1994 The MathWorks develops a fix.

Nov 24, 1994 New York Times story. Intel still sending out flawed chips.

Will replace chips only if it caused a problem in an

important application.

Dec 12, 1994 IBM halts shipment of Pentium based PCs

Dec 16, 1994 Intel stock falls again.

Dec 19, 1994 More reports in the NYT: lawsuits, etc.

Dec 20, 1994 Intel admits. Sets aside $420 million to fix. 19

numerical ”bugs”

Obvious

Software has bugs

Not-SO-Obvious

Numerical software has two unique bugs:

1. roundoff error

2. truncation error

20

numerical errors

Roundoff

Roundoff occurs when digits in a decimal point (0.3333...) are lost (0.3333)

due to a limit on the memory available for storing one numerical value.

Truncation

Truncation error occurs when discrete values are used to approximate a

mathematical expression.

21

uncertainty: well- or ill-conditioned?

Errors in input data can cause uncertain results

• input data can be experimental or rounded. leads to a certain

variation in the results

• well-conditioned: numerical results are insensitive to small variations

in the input

• ill-conditioned: small variations lead to drastically different

numerical calculations (a.k.a. poorly conditioned)

22

our job

As numerical analysts, we need to

1. solve a problem so that the calculation is not susceptible to large

roundoff error

2. solve a problem so that the approximation has a tolerable truncation

error

How?

• incorporate roundoff-truncation knowledge into

• the mathematical model

• the method

• the algorithm

• the software design

• awareness → correct interpretation of results

23

floating points

Normalized Floating-Point Representation

Real numbers are stored as

x = ±(0.d1d2d3 . . . dm)β × βe

• d1d2d3 . . . dm is the mantissa, e is the exponent

• e is negative, positive or zero

• the general normalized form requires d1 6= 0

24

floating point

Example

In base 10

• 1000.12345 can be written as

(0.100012345)10 × 104

• 0.000812345 can be written as

(0.812345)10 × 10−3

25

floating point

Suppose we have only 3 bits for a mantissa and a 1 bit exponent stored

like

.d1 d2 d3 e1

All possible combinations give:

0002 = 0

. . . × 2−1,0,1

1112 = 7

So we get 0, 1
16 ,

2
16 , . . . ,

7
16 , 0, 1

4 ,
2
4 , . . . ,

7
4 , and 0, 1

8 ,
2
8 , . . . ,

7
8 . On the real

line:

26

overflow, underflow

• computations too close to zero may result in underflow

• computations too large may result in overflow

• overflow error is considered more severe

• underflow can just fall back to 0

27

normalizing

If we use the normalized form in our 4-bit case, we lose 0.0012 × 2−1,0,1

along with other. So we cannot represent 1
16 , 1

8 , and 3
16 .

28

ieee-754 why this is important:

• IEEE-754 is a widely used standard accepted by hardware/software

makers

• defines the floating point distribution for our computation

• offer several rounding modes which effect accuracy

• Floating point arithmetic emerges in nearly every piece of code

• even modest mathematical operation yield loss of significant bits

• several pitfalls in common mathematical expressions

29

ieee floating point (v. 754)

• How much storage do we actually use in practice?

• 32-bit word lengths are typical

• IEEE Single-precision floating-point numbers use 32 bits

• IEEE Double-precision floating-point numbers use 64 bits

• Goal: use the 32-bits to best represent the normalized floating point

number

30

ieee single precision (marc-32)

x = ±q × 2m

Notes:

• 1-bit sign

• 8-bit exponent |m|
• 23-bit mantissa q

• The leading one in the mantissa q does not need to be represented:

b1 = 1 is hidden bit

• IEEE 754: put x in 1.f normalized form

• 0 < m + 127 = c < 255

• Largest exponent = 127, Smallest exponent = −126

• Special cases: c = 0, 255

• use 1-bit sign for negatives (1) and positives (0)

31

ieee single precision

x = ±q × 2m

Process for x = −52.125:

1. Convert both integer and fractional to binary:

x = −(110100.00100000000)2

2. Convert to 1.f form: x = −︸︷︷︸
1

(1. 101 000 010 000 . . . 0︸ ︷︷ ︸
23

)2 × 25

3. Convert exponent 5 = c − 127⇒ c = 132⇒ c = (10 000 100︸ ︷︷ ︸
8

)2

1︸︷︷︸
1

10 000 100︸ ︷︷ ︸
8

101 000 010 000 . . . 0︸ ︷︷ ︸
23

32

ieee single precision

Special Cases:

• denormalized/subnormal numbers: use 1 extra bit in the significant:

exponent is now −126 (less precision, more range), indicated by

000000002 in the exponent field

• two zeros: +0 and −0 (0 mantissa, 0 exponent)

• two ∞’s: +∞ and −∞
• ∞ (0 mantissa, 111111112 exponenet)

• NaN (any mantissa, 111111112 exponent)

• see appendix C.1 in NMC 6th ed.

33

ieee double precision

• 1-bit sign

• 11-bit exponent

• 52-bit mantissa

• single-precision: about 6 decimal digits of precision

• double-precision: about 15 decimal digits of precision

• m = c − 1023

34

precision vs. range

type range approx range

−3.40× 1038 ≤ x ≤ −1.18× 10−38

single 0 2−126 → 2128

1.18× 10−38 ≤ x ≤ 3.40× 1038

−1.80× 10318 ≤ x ≤ −2.23× 10−308

double 0 2−1022 → 21024

2.23× 10−308 ≤ x ≤ 1.80× 10308

small numbers example

35

plus one example

36

εm

Take x = 1.0 and add 1/2, 1/4, . . . , 2−i :

Hidden bit

↓ ← 52 bits →
1 1 0 0 0 0 0 0 0 0 0 0 e e

1 0 1 0 0 0 0 0 0 0 0 0 e e

1 0 0 1 0 0 0 0 0 0 0 0 e e

.......

1 0 0 0 0 0 0 0 0 0 0 1 e e

1 0 0 0 0 0 0 0 0 0 0 0 e e

• Ooops!

• use fl(x) to represent the floating point machine number for the real

number x

• fl(1 + 2−52) 6= 1, but fl(1 + 2−53) = 1

37

εm: machine epsilon

Machine epsilon εm is the smallest number such that

fl(1 + εm) 6= 1

• The double precision machine epsilon is about 2−52.

• The single precision machine epsilon is about 2−23.

38

39

floating point errors

• Not all reals can be exactly represented as a machine floating point

number. Then what?

• Round-off error

• IEEE options:

• Round to next nearest FP (preferred), Round to 0, Round up, and

Round down

Let x+ and x− be the two floating point machine numbers closest to x

• round to nearest: round(x) = x− or x+, whichever is closest

• round toward 0: round(x) = x− or x+, whichever is between 0 and x

• round toward −∞ (down): round(x) = x−

• round toward +∞ (up): round(x) = x+

40

floating point errors

How big is this error? Suppose (x is closer to x−)

x = (0.1b2b3 . . . b24b25b26)2 × 2m

x− = (0.1b2b3 . . . b24)2 × 2m

x+ =
(
(0.1b2b3 . . . b24)2 + 2−24

)
× 2m

|x − x−| ≤
|x+ − x−|

2
= 2m−25∣∣∣∣x − x−

x

∣∣∣∣ ≤ 2m−25

1/2× 2m
≤ 2−24 = εm/2

41

floating point arithmetic

• Problem: The set of representable machine numbers is FINITE.

• So not all math operations are well defined!

• Basic algebra breaks down in floating point arithmetic

Example

a + (b + c) 6= (a + b) + c

42

floating point arithmetic

Rule 1.

fl(x) = x(1 + ε), where |ε| ≤ εm

Rule 2.

For all operations � (one of +,−, ∗, /)

fl(x � y) = (x � y)(1 + ε�), where |ε�| ≤ εm

Rule 3.

For +, ∗ operations

fl(a� b) = fl(b � a)

There were many discussions on what conditions/rules should be satisfied

by floating point arithmetic. The IEEE standard is a set of standards

adopted by many CPU manufacturers. 43

floating point arithmetic

Consider the sum of 3 numbers: y = a + b + c .

Done as fl(fl(a + b) + c)

η = fl(a + b) = (a + b)(1 + ε1)

y1 = fl(η + c) = (η + c)(1 + ε2)

= [(a + b)(1 + ε1) + c] (1 + ε2)

= [(a + b + c) + (a + b)ε1)] (1 + ε2)

= (a + b + c)

[
1 +

a + b

a + b + c
ε1(1 + ε2) + ε2

]
So disregarding the high order term ε1ε2

fl(fl(a + b) + c) = (a + b + c)(1 + ε3) with ε3 ≈
a + b

a + b + c
ε1 + ε2

44

floating point arithmetic

If we redid the computation as y2 = fl(a + fl(b + c)) we would find

fl(a + fl(b + c)) = (a + b + c)(1 + ε4) with ε4 ≈
b + c

a + b + c
ε1 + ε2

Main conclusion:

The first error is amplified by the factor (a + b)/y in the first case and

(b + c)/y in the second case.

In order to sum n numbers more accurately, it is better to start with the

small numbers first. [However, sorting before adding is usually not worth

the cost!]

45

floating point arithmetic

One of the most serious problems in floating point arithmetic is that of

cancellation. If two large and close-by numbers are subtracted the result

(a small number) carries very few accurate digits (why?). This is fine if

the result is not reused. If the result is part of another calculation, then

there may be a serious problem

Example

Roots of the equation

x2 + 2px − q = 0

Assume we want the root with smallest absolute value:

y = −p +
√

p2 + q =
q

p +
√

p2 + q

46

catastrophic cancellation

Adding c = a + b will result in a large error if

• a� b

• a� b

Let

a = x .xxx · · · × 100

b = y .yyy · · · × 10−8

Then

finite precision︷ ︸︸ ︷
x .xxx xxxx xxxx xxxx

+ 0.000 0000 yyyy yyyy yyyy yyyy

= x .xxx xxxx zzzz zzzz ???? ????︸ ︷︷ ︸
lost precision

47

catastrophic cancellation

Subtracting c = a− b will result in large error if a ≈ b. For example

a = x .xxxx xxxx xxx1

lost︷ ︸︸ ︷
ssss . . .

b = x .xxxx xxxx xxx0

lost︷ ︸︸ ︷
tttt . . .

Then

finite precision︷ ︸︸ ︷
x .xxx xxxx xxx1

+ x .xxx xxxx xxx0

= 0.000 0000 0001 ???? ????︸ ︷︷ ︸
lost precision

48

summary

• addition: c = a + b if a� b or a� b

• subtraction: c = a− b if a ≈ b

• catastrophic: caused by a single operation, not by an accumulation

of errors

• can often be fixed by mathematical rearrangement

49

loss of significance

Example

x = 0.37214 48693 and y = 0.37202 14371. What is the relative error in

x − y in a computer with 5 decimal digits of accuracy?

|x − y − (x̄ − ȳ)|
|x − y |

=
|0.37214 48693− 0.37202 14371− 0.37214 + 0.37202|

|0.37214 48693− 0.37202 14371|
≈ 3× 10−2

50

loss of significance

Loss of Precision Theorem

Let x and y be (normalized) floating point machine numbers with x >

y > 0.

If 2−p ≤ 1− y
x ≤ 2−q for positive integers p and q, the significant binary

digits lost in calculating x − y is between q and p.

51

loss of significance

Example

Consider x = 37.593621 and y = 37.584216.

2−11 < 1− y

x
= 0.00025 01754 < 2−12

So we lose 11 or 12 bits in the computation of x − y . yikes!

Example

Back to the other example (5 digits): x = 0.37214 and y = 0.37202.

10−4 < 1− y

x
= 0.00032 < 10−5

So we lose 4 or 5 bits in the computation of x − y . Here, x − y = 0.00012

which has only 1 significant digit that we can be sure about

52

loss of significance

So what to do? Mainly rearrangement.

f (x) =
√

x2 + 1− 1

Problem at x ≈ 0.

One type of fix:

f (x) =
(√

x2 + 1− 1
)(√x2 + 1 + 1√

x2 + 1 + 1

)

=
x2

√
x2 + 1 + 1

no subtraction!

53

loss of significance

So what to do? Mainly rearrangement.

f (x) =
√

x2 + 1− 1

Problem at x ≈ 0.

One type of fix:

f (x) =
(√

x2 + 1− 1
)(√x2 + 1 + 1√

x2 + 1 + 1

)

=
x2

√
x2 + 1 + 1

no subtraction!

53

loss of significance

So what to do? Mainly rearrangement.

f (x) =
√

x2 + 1− 1

Problem at x ≈ 0.

One type of fix:

f (x) =
(√

x2 + 1− 1
)(√x2 + 1 + 1√

x2 + 1 + 1

)

=
x2

√
x2 + 1 + 1

no subtraction!

53

