interpolation

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

semester plan

Tu Nov 10 Least-squares and error
Th Nov 12 Case Study: Cancer Analysis
Tu Nov 17 Building a basis for approximation (interpolation)
Th Nov 19 non-linear Least-squares
Tu Dec 01 non-linear Least-squares
Th Dec 03 optimization methods
Tu Dec 08 Elements of Simulation + Review

interpolation

Today's ojbectives:

1. Take a few points and interpolate instead of fit
2. Write the interpolant as a combination of *basis* functions
3. Implemente interpolation with several types of basis functions
4. Construct interpolation through a linear algebra problem

interpolation: introduction

Objective

Approximate an unknown function $f(x)$ by an easier function $g(x)$, such as a polynomial.

Objective (alt)
Approximate some data by a function $g(x)$.
Types of approximating functions:

1. Polynomials
2. Piecewise polynomials
3. Rational functions
4. Trig functions
5. Others (inverse, exponential, Bessel, etc)

interpolation: introduction

How do we approximate $f(x)$ by $g(x)$? In what sense is the approximation a good one?

1. Least-squares: $g(x)$ must deviate as little as possible from $f(x)$ in the sense of a 2-norm: minimize $\int_{a}^{b}|f(t)-g(t)|^{2} d t$
2. Chebyshev: $g(x)$ must deviate as little as possible from $f(x)$ in the sense of the ∞-norm: minimize $\max _{t \in[a, b]}|f(t)-g(t)|$.
3. Interpolation: $g(x)$ must have the same values of $f(x)$ at set of given points.

polynomial interpolation

Given $n+1$ distinct points x_{0}, \ldots, x_{n}, and values y_{0}, \ldots, y_{n}, find a polynomial $p(x)$ of degree n so that

$$
p\left(x_{i}\right)=y_{i} \quad i=0, \ldots, n
$$

- A polynomial of degree n has $n+1$ degrees-of-freedom:

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

- $n+1$ constraints determine the polynomial uniquely:

Theorem
If points x_{0}, \ldots, x_{n} are distinct, then for arbitrary y_{0}, \ldots, y_{n}, there is a unique polynomial $p(x)$ of degree at most n such that $p\left(x_{i}\right)=y_{i}$ for $i=0, \ldots, n$.

monomials

First attempt: try picking

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

So for each x_{i} we have

$$
p\left(x_{i}\right)=a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\cdots+a_{n} x_{i}^{n}=y_{i}
$$

OR

$$
\begin{gathered}
a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2}+\cdots+a_{n} x_{0}^{n}=y_{0} \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{n} x_{1}^{n}=y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{2}^{n}=y_{2} \\
a_{0}+a_{1} x_{3}+a_{2} x_{3}^{2}+\cdots+a_{n} x_{3}^{n}=y_{3} \\
\vdots \\
a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\cdots+a_{n} x_{n}^{n}=y_{n}
\end{gathered}
$$

monomial: the problem

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
& & & \vdots & \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Question

- Is this a "good" system to solve?

example

Consider Gas prices (in cents) for the following years:

```
\begin{tabular}{l|l|llllll}
\(x\) & year & 1986 & 1988 & 1990 & 1992 & 1994 & 1996 \\
\hline\(y\) & price & 133.5 & 132.2 & 138.7 & 141.5 & 137.6 & 144.2
\end{tabular}
1 year = np.array([1986, 1988, 1990, 1992, 1994, 1996])
2 price= np.array([133.5, 132.2, 138.7, 141.5, 137.6,
    144.2])
3
4 M = np.vander(year)
5 a = np.linalg.solve(M,price)
6
7 x = np.linspace(1986,1996,200)
8 p = np.polyval(a,x)
9 plt.plot(year,price,'o',x,p,'-')
```


back to the basics...

Example

Find the interpolating polynomial of least degree that interpolates

$$
\begin{array}{c|cc}
x & 1.4 & 1.25 \\
\hline y & 3.7 & 3.9
\end{array}
$$

Directly

$$
\begin{aligned}
p_{1}(x) & =\left(\frac{x-1.25}{1.4-1.25}\right) 3.7+\left(\frac{x-1.4}{1.25-1.4}\right) 3.9 \\
& =3.7+\left(\frac{3.9-3.7}{1.25-1.4}\right)(x-1.4) \\
& =3.7-\frac{4}{3}(x-1.4)
\end{aligned}
$$

lagrange

What have we done? We've written $p(x)$ as

$$
p(x)=\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right) y_{0}+\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right) y_{1}
$$

- the sum of two linear polynomials
- the first is zero at x_{1} and 1 at x_{0}
- the second is zero at x_{0} and 1 at x_{1}
- these are the two linear Lagrange basis functions:

$$
\ell_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \quad \ell_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

lagrange

Example

Write the Lagrange basis functions for

$$
\begin{array}{c|ccc}
x & \frac{1}{3} & \frac{1}{4} & 1 \\
\hline y & 2 & -1 & 7
\end{array}
$$

Directly

$$
\begin{aligned}
& \ell_{0}(x)=\frac{\left(x-\frac{1}{4}\right)(x-1)}{\left(\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{3}-1\right)} \\
& \ell_{1}(x)=\frac{\left(x-\frac{1}{3}\right)(x-1)}{\left(\frac{1}{4}-\frac{1}{3}\right)\left(\frac{1}{4}-1\right)} \\
& \ell_{2}(x)=\frac{\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)}{\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)}
\end{aligned}
$$

lagrange

The general Lagrange form is

$$
\ell_{k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

The resulting interpolating polynomial is

$$
p(x)=\sum_{k=0}^{n} \ell_{k}(x) y_{k}
$$

example

Find the equation of the parabola passing through the points $(1,6)$, $(-1,0)$, and $(2,12)$

$$
\begin{aligned}
& x_{0}=1, x_{1}=-1, x_{2}=2 ; \quad y_{0}=6, y_{1}=0, y_{2}=12 ; \\
& \ell_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{(x+1)(x-2)}{(2)(-1)} \\
& \ell_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{(x-1)(x-2)}{(-2)(-3)} \\
& \ell_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x-1)(x+1)}{(1)(3)} \\
& p_{2}(x)=y_{0} \ell_{0}(x)+y_{1} \ell_{1}(x)+y_{2} \ell_{2}(x) \\
& =-3 \times(x+1)(x-2)+0 \times \frac{1}{6}(x-1)(x-2) \\
& +4 \times(x-1)(x+1) \\
& =(x+1)[4(x-1)-3(x-2)] \\
& =(x+1)(x+2)
\end{aligned}
$$

summary so far:

- Monomials: $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ results in poor conditioning
- Monomials: but evaluating the Monomial interpolant is cheap (nested iteration)
- Lagrange: $p(x)=\ell_{0}(x) y_{0}+\cdots+\ell_{n}(x) y_{n}$ is very well behaved.
- Lagrange: but evaluating the Lagrange interpolant is expensive (each basis function is of the same order and the interpolant is not easily reduced to nested form)

fixing monomials, fixing lagrange

Back to the gas price example. Suppose we use a better basis like

$$
(x-\bar{x})^{k}
$$

instead of

$$
x^{k}
$$

For example, $\bar{x}=\operatorname{average}\left(x_{i}\right), i=0, \ldots, n$.
The basis $(x-\bar{x})^{k}$ are called shifted monomials because x is shifted by \bar{x}.

recall: monomials

Obvious attempt: try picking

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

So for each x_{i} we have

$$
p\left(x_{i}\right)=a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\cdots+a_{n} x_{i}^{n}=y_{i}
$$

OR

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
& & & \vdots & \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

That is,

$$
a=M^{-1} y
$$

Very bad matrix: terribly ill-conditioned, inverse entries are large
Very bad evaluation: values are huge

recall: lagrange

The general Lagrange form is

$$
\ell_{k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

The resulting interpolating polynomial is

$$
p(x)=\sum_{k=0}^{n} \ell_{k}(x) y_{k}
$$

example

Find the equation of a quadratic passing through the points $(0,-1)$, $(1,-1)$, and (2,7).
$x_{0}=0, x_{1}=1, x_{2}=2 \quad y_{0}=-1, y_{1}=-1, y_{2}=7$

1. Form the Lagrange basis functions, $\ell_{i}(x)$ with $\ell_{i}\left(x_{j}\right)=\delta_{i j}$
2. Combine the Lagrange basis functions

$$
\begin{aligned}
p_{2}(x) & =y_{0} \ell_{0}(x)+y_{1} \ell_{1}(x)+y_{2} \ell_{2}(x) \\
& =(-1) \frac{(x-1)(x-2)}{2}+(-1) \frac{x(x-2)}{-1}+(7) \frac{x(x-1)}{2}
\end{aligned}
$$

Evaluate is nice, but expensive: no easy nested form.

how bad is polynomial interpolation?

Let's take something very smooth function

How does interpolation behave?

some analysis...

what can we say about

$$
e(t)=f(t)-p_{n}(t)
$$

at some point x ? Consider $p=1$: linear interpolation of a function at $x=x_{0}, x_{1}$

- want: error at $x, e(x)$
- look at

$$
g(t)=e(t)-\frac{\left(t-x_{0}\right)\left(t-x_{1}\right)}{\left(x-x_{0}\right)\left(x-x_{1}\right)} e(x)
$$

- $g(t)$ is 0 at $t=x_{0}, x_{1}, x$
- so $g^{\prime}(t)$ is zero at two points, $g^{\prime \prime}(t)$ is zero at one point, call it c

$$
\begin{aligned}
0 & =g^{\prime \prime}(c)=e^{\prime \prime}(t)-2 \frac{e(x)}{\left(x-x_{0}\right)\left(x-x_{1}\right)} \\
& =f^{\prime \prime}(t)-2 \frac{e(x)}{\left(x-x_{0}\right)\left(x-x_{1}\right)} \\
e(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2} f^{\prime \prime}(c)
\end{aligned}
$$

Theorem: Interpolation Error I

If $p_{n}(x)$ is the (at most) n degree polynomial interpolating $f(x)$ at $n+1$ distinct points and if $f^{(n+1)}$ is continuous, then

$$
e(x)=f(x)-p_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Theorem: Bounding Lemma
Suppose x_{i} are equispaced in $[a, b]$ for $i=0, \ldots, n$. Then

$$
\prod_{i=0}^{n}\left|x-x_{i}\right| \leqslant \frac{h^{n+1}}{4} n!
$$

Theorem: Interpolation Error II
Let $\left|f^{(n+1)}(x)\right| \leqslant M$, then with the above,

$$
\left|f(x)-p_{n}(x)\right| \leqslant \frac{M h^{n+1}}{4(n+1)}
$$

fixes

We have two options:

1. move the nodes: Chebychev nodes
2. piecewise polynomials (splines)

Option \#1: Chebychev nodes in $[-1,1]$

$$
x_{i}=\cos \left(\pi \frac{2 i+1}{2 n+2}\right), \quad i=0, \ldots, n
$$

Option \#2: piecewise polynomials...

chebychev nodes

- Can obtain nodes from equidistant points on a circle projected down
- Nodes are non uniform and non nested

chebychev nodes

High degree polynomials using equispaced points suffer from many oscillations

- Points are bunched at the ends of the interval
- Error is distributed more evenly

