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semester plan

Tu Nov 10 Least-squares and error

Th Nov 12 Case Study: Cancer Analysis

Tu Nov 17 Building a basis for approximation (interpolation)

Th Nov 19 non-linear Least-squares

Tu Dec 01 non-linear Least-squares

Th Dec 03 optimization methods

Tu Dec 08 Elements of Simulation + Review

2



interpolation

Today’s ojbectives:

1. Take a few points and interpolate instead of fit

2. Write the interpolant as a combination of *basis* functions

3. Implemente interpolation with several types of basis functions

4. Construct interpolation through a linear algebra problem
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interpolation: introduction

Objective
Approximate an unknown function f(x) by an easier function g(x),
such as a polynomial.

Objective (alt)
Approximate some data by a function g(x).

Types of approximating functions:

1. Polynomials

2. Piecewise polynomials

3. Rational functions

4. Trig functions

5. Others (inverse, exponential, Bessel, etc)
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interpolation: introduction

How do we approximate f(x) by g(x)? In what sense is the
approximation a good one?

1. Least-squares: g(x) must deviate as little as possible from f(x) in
the sense of a 2-norm: minimize

∫b
a |f(t) − g(t)|2 dt

2. Chebyshev: g(x) must deviate as little as possible from f(x) in
the sense of the ∞-norm: minimize maxt∈[a,b] |f(t) − g(t)|.

3. Interpolation: g(x) must have the same values of f(x) at set
of given points.

5



polynomial interpolation

Given n+1 distinct points x0, . . . , xn, and values y0, . . . , yn, find a poly-
nomial p(x) of degree n so that

p(xi) = yi i = 0, . . . , n

• A polynomial of degree n has n + 1 degrees-of-freedom:

p(x) = a0 + a1x + · · ·+ anxn

• n + 1 constraints determine the polynomial uniquely:

p(xi) = yi , i = 0, . . . , nTheorem
If points x0, . . . , xn are distinct, then for arbitrary y0, . . . , yn, there is a
unique polynomial p(x) of degree at most n such that p(xi) = yi for
i = 0, . . . , n.
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monomials

First attempt: try picking

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

So for each xi we have

p(xi) = a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi

OR

a0 + a1x0 + a2x2
0 + · · ·+ anxn

0 = y0

a0 + a1x1 + a2x2
1 + · · ·+ anxn

1 = y1

a0 + a1x2 + a2x2
2 + · · ·+ anxn

2 = y2

a0 + a1x3 + a2x2
3 + · · ·+ anxn

3 = y3

...

a0 + a1xn + a2x2
n + · · ·+ anxn

n = yn
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monomial: the problem


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

1 xn x2
n . . . xn

n




a0

a1

a2
...

an

 =


y0

y1

y2
...

yn



Question

• Is this a “good” system to solve?
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example

Consider Gas prices (in cents) for the following years:
x year 1986 1988 1990 1992 1994 1996
y price 133.5 132.2 138.7 141.5 137.6 144.2

1 year = np.array([1986, 1988, 1990, 1992, 1994, 1996])

2 price= np.array([133.5, 132.2, 138.7, 141.5, 137.6,

144.2])

3

4 M = np.vander(year)

5 a = np.linalg.solve(M,price)

6

7 x = np.linspace(1986,1996,200)

8 p = np.polyval(a,x)

9 plt.plot(year,price,’o’,x,p,’-’)
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back to the basics...

Example
Find the interpolating polynomial of least degree that interpolates

x 1.4 1.25
y 3.7 3.9

Directly

p1(x) =
(

x − 1.25
1.4 − 1.25

)
3.7 +

(
x − 1.4

1.25 − 1.4

)
3.9

= 3.7 +

(
3.9 − 3.7

1.25 − 1.4

)
(x − 1.4)

= 3.7 −
4
3
(x − 1.4)
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lagrange

What have we done? We’ve written p(x) as

p(x) =
(

x − x1

x0 − x1

)
y0 +

(
x − x0

x1 − x0

)
y1

• the sum of two linear polynomials

• the first is zero at x1 and 1 at x0

• the second is zero at x0 and 1 at x1

• these are the two linear Lagrange basis functions:

`0(x) =
x − x1

x0 − x1
`1(x) =

x − x0

x1 − x0
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lagrange

Example
Write the Lagrange basis functions for

x 1
3

1
4 1

y 2 -1 7

Directly

`0(x) =
(x − 1

4 )(x − 1)
( 1

3 − 1
4 )(

1
3 − 1)

`1(x) =
(x − 1

3 )(x − 1)
( 1

4 − 1
3 )(

1
4 − 1)

`2(x) =
(x − 1

3 )(x − 1
4 )

(1 − 1
3 )(1 − 1

4 )
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lagrange

The general Lagrange form is

`k (x) =
n∏

i=0,i,k

x − xi

xk − xi

The resulting interpolating polynomial is

p(x) =
n∑

k=0

`k (x)yk
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example

Find the equation of the parabola passing through the points (1,6),
(-1,0), and (2,12)

x0 = 1, x1 = −1, x2 = 2; y0 = 6, y1 = 0, y2 = 12;

`0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

= (x+1)(x−2)
(2)(−1)

`1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

= (x−1)(x−2)
(−2)(−3)

`2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

= (x−1)(x+1)
(1)(3)

p2(x) = y0`0(x) + y1`1(x) + y2`2(x)

= −3 × (x + 1)(x − 2) + 0 × 1
6
(x − 1)(x − 2)

+4 × (x − 1)(x + 1)

= (x + 1)[4(x − 1) − 3(x − 2)]

= (x + 1)(x + 2)
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summary so far:

• Monomials: p(x) = a0 + a1x + · · ·+ anxn results in poor
conditioning

• Monomials: but evaluating the Monomial interpolant is cheap
(nested iteration)

• Lagrange: p(x) = `0(x)y0 + · · ·+ `n(x)yn is very well behaved.

• Lagrange: but evaluating the Lagrange interpolant is expensive
(each basis function is of the same order and the interpolant is
not easily reduced to nested form)
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fixing monomials, fixing lagrange

Back to the gas price example. Suppose we use a better basis like

(x − x̄)k

instead of
xk

For example, x̄ = average(xi), i = 0, . . . , n.

The basis (x − x̄)k are called shifted monomials because x is shifted
by x̄.
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recall: monomials

Obvious attempt: try picking

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

So for each xi we have

p(xi) = a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi

OR 
1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

1 xn x2
n . . . xn

n




a0

a1
...

an

 =


y0

y1
...

yn


That is,

a = M−1y

Very bad matrix: terribly ill-conditioned, inverse entries are large

Very bad evaluation: values are huge
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recall: lagrange

The general Lagrange form is

`k (x) =
n∏

i=0,i,k

x − xi

xk − xi

The resulting interpolating polynomial is

p(x) =
n∑

k=0

`k (x)yk
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example

Find the equation of a quadratic passing through the points (0,-1),
(1,-1), and (2,7).

x0 = 0, x1 = 1, x2 = 2 y0 = −1, y1 = −1, y2 = 7

1. Form the Lagrange basis functions, `i(x) with `i(xj) = δij

2. Combine the Lagrange basis functions

p2(x) = y0`0(x) + y1`1(x) + y2`2(x)

= (−1)
(x − 1)(x − 2)

2
+ (−1)

x(x − 2)
−1

+ (7)
x(x − 1)

2

Evaluate is nice, but expensive: no easy nested form.
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how bad is polynomial interpolation?

Let’s take something very smooth function

How does interpolation behave?
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some analysis...

what can we say about

e(t) = f(t) − pn(t)

at some point x? Consider p = 1: linear interpolation of a function at
x = x0, x1

• want: error at x, e(x)
• look at

g(t) = e(t) −
(t − x0)(t − x1)

(x − x0)(x − x1)
e(x)

• g(t) is 0 at t = x0, x1, x
• so g ′(t) is zero at two points, g ′′(t) is zero at one point, call it c

0 = g ′′(c) = e ′′(t) − 2
e(x)

(x − x0)(x − x1)

= f ′′(t) − 2
e(x)

(x − x0)(x − x1)

e(x) =
(x − x0)(x − x1)

2
f ′′(c) 21



Theorem: Interpolation Error I
If pn(x) is the (at most) n degree polynomial interpolating f(x) at n + 1
distinct points and if f (n+1) is continuous, then

e(x) = f(x) − pn(x) =
1

(n + 1)!
f (n+1)(c)

n∏
i=0

(x − xi)

Theorem: Bounding Lemma
Suppose xi are equispaced in [a, b] for i = 0, . . . , n. Then

n∏
i=0

|x − xi | 6
hn+1

4
n!

Theorem: Interpolation Error II

Let |f (n+1)(x)| 6 M, then with the above,

|f(x) − pn(x)| 6
Mhn+1

4(n + 1)

22



fixes

We have two options:

1. move the nodes: Chebychev nodes

2. piecewise polynomials (splines)

Option #1: Chebychev nodes in [−1, 1]

xi = cos(π
2i + 1
2n + 2

), i = 0, . . . , n

Option #2: piecewise polynomials...

23



chebychev nodes

• Can obtain nodes from equidistant points on a circle projected
down

• Nodes are non uniform and non nested
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chebychev nodes

High degree polynomials using equispaced points suffer from many
oscillations

• Points are bunched at the ends of the interval

• Error is distributed more evenly
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