least-squares

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign

polling data

Suppose we are given the data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ and we want to find a curve that best fits the data.

Super Tracker

fitting curves

fitting a line

Given n data points $\left\{\left(x_{1}, y_{i}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ find a and b such that

$$
y_{i}=a x_{i}+b \quad \forall i \in[1, n] .
$$

In matrix form, find a and b that solves

$$
\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Systems with more equations than unknowns are called overdetermined

overdetermined systems

If A is an $m \times n$ matrix, then in general, an $m \times 1$ vector b may not lie in the column space of A. Hence $A x=b$ may not have an exact solution.

Definition
The residual vector is

$$
r=b-A x
$$

The least squares solution is given by minimizing the square of the residual in the 2-norm.

normal equations

Writing $r=(b-A x)$ and substituting, we want to find an x that minimizes the following function

$$
\phi(x)=\|r\|_{2}^{2}=r^{\top} r=(b-A x)^{T}(b-A x)=b^{\top} b-2 x^{\top} A^{\top} b+x^{\top} A^{\top} A x
$$

From calculus we know that the minimizer occurs where $\nabla \phi(x)=0$.
The derivative is given by

$$
\nabla \phi(x)=-2 A^{\top} b+2 A^{\top} A x=0
$$

Definition

The system of normal equations is given by

$$
A^{T} A x=A^{T} b
$$

solving normal equations

Since the normal equations forms a symmetric system, we can solve by computing the Cholesky factorization

$$
A^{T} A=L L^{T}
$$

and solving $L y=A^{\top} b$ and $L^{\top} x=y$.

Consider

$$
A=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]
$$

where $0<\epsilon<\sqrt{\epsilon_{\text {mach }}}$. The normal equations for this system is given by

$$
A^{T} A=\left[\begin{array}{cc}
1+\epsilon^{2} & 1 \\
1 & 1+\epsilon^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

normal equations: conditioning

The normal equations tend to worsen the condition of the matrix.

Theorem

$$
\operatorname{cond}\left(A^{T} A\right)=(\operatorname{cond}(A))^{2}
$$

```
1 >> A = rand (10,10);
2 >> cond(A)
3 43.4237
4 >> cond(A'*A)
    1.8856e+03
```

How can we solve the least squares problem without squaring the condition of the matrix?

other approaches

- QR factorization.
- For $A \in \mathbb{R}^{m \times n}$, factor $A=Q R$ where
- Q is an $m \times m$ orthogonal matrix
- R is an $m \times n$ upper triangular matrix (since R is an $m \times n$ upper triangular matrix we can write $R=\left[\begin{array}{c}R^{\prime} \\ 0\end{array}\right]$ where R is $n \times n$ upper triangular and 0 is the $(m-n) \times n$ matrix of zeros)
- SVD - singular value decomposition
- For $A \in \mathbb{R}^{m \times n}$, factor $A=U S V^{\top}$ where
- U is an $m \times m$ orthogonal matrix
- V is an $n \times n$ orthogonal matrix
- S is an $m \times n$ diagonal matrix whose elements are the singular values.

orthogonal matrices

Definition

A matrix Q is orthogonal if

$$
Q^{T} Q=Q Q^{T}=1
$$

Orthogonal matrices preserve the Euclidean norm of any vector v,

$$
\|Q v\|_{2}^{2}=(Q v)^{\top}(Q v)=v^{\top} Q^{\top} Q v=v^{\top} v=\|v\|_{2}^{2}
$$

using qr factorization for least squares

Now that we know orthogonal matrices preserve the euclidean norm, we can apply orthogonal matrices to the residual vector without changing the norm of the residual.

$$
\|r\|_{2}^{2}=\|b-A x\|_{2}^{2}=\left\|b-Q\left[\begin{array}{c}
R \\
0
\end{array}\right] x\right\|_{2}^{2}=\left\|Q^{\top} b-Q^{\top} Q\left[\begin{array}{c}
R \\
0
\end{array}\right] x\right\|_{2}^{2}=\left\|Q^{\top} b-\left[\begin{array}{c}
R \\
0
\end{array}\right] x\right\|_{2}^{2}
$$

If $Q^{T} b=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ and $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ then

$$
\left\|Q^{\top} b-\left[\begin{array}{l}
R \\
0
\end{array}\right] x\right\|_{2}^{2}=\left\|\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]-\left[\begin{array}{c}
R x_{1} \\
0
\end{array}\right]\right\|_{2}^{2}=\left\|\left[\begin{array}{c}
c_{1}-R x_{1} \\
c_{2}
\end{array}\right]\right\|_{2}^{2}=\left\|c_{1}-R x_{1}\right\|_{2}^{2}+\left\|c_{2}\right\|_{2}^{2}
$$

Hence the least squares solution is given by solving $\left[\begin{array}{l}R \\ 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$. We can solve $R x_{1}=c_{1}$ using back substitution and the residual is $\|r\|_{2}=\left\|c_{2}\right\|_{2}$.

gram-schmidt orthogonalization

One way to obtain the $Q R$ factorization of a matrix A is by Gram-Schmidt orthogonalization.

We are looking for a set of orthogonal vectors q that span the range of A.

For the simple case of 2 vectors $\left\{a_{1}, a_{2}\right\}$, first normalize a_{1} and obtain

$$
q_{1}=\frac{a_{1}}{\left\|a_{1}\right\|}
$$

Now we need q_{2} such that $q_{1}^{T} q_{2}=0$ and $q_{2}=a_{2}+c q_{1}$. That is,

$$
R\left(q_{1}, q_{2}\right)=R\left(a_{1}, a_{2}\right)
$$

Enforcing orthogonality gives:

$$
q_{1}^{T} q_{2}=0=q_{1}^{T} a_{2}+c q_{1}^{T} q_{1}
$$

gram-schmidt orthogonalization

$$
q_{1}^{T} q_{2}=0=q_{1}^{T} a_{2}+c q_{1}^{T} q_{1}
$$

Solving for the constant c.

$$
c=-\frac{q_{1}^{\top} a_{2}}{q_{1}^{\top} q_{1}}
$$

reformulating q_{2} gives.

$$
q_{2}=a_{2}-\frac{q_{1}^{\top} a_{2}}{q_{1}^{\top} q_{1}} q_{1}
$$

Adding another vector a_{3} and we have for q_{3},

$$
q_{3}=a_{3}-\frac{q_{2}^{\top} a_{3}}{q_{2}^{\top} q_{2}} q_{2}-\frac{q_{1}^{\top} a_{3}}{q_{1}^{\top} q_{1}} q_{1}
$$

Repeating this idea for n columns gives us Gram-Schmidt orthogonalization.

gram-schmidt orthogonalization

Since R is upper triangular and $A=Q R$ we have

$$
\begin{aligned}
a_{1} & =q_{1} r_{11} \\
a_{2} & =q_{1} r_{12}+q_{2} r_{22} \\
\vdots & =\vdots \\
a_{n} & =q_{1} r_{1 n}+q_{2} r_{2 n}+\ldots+q_{n} r_{n n}
\end{aligned}
$$

From this we see that $r_{i j}=\frac{q_{i}^{\top} a_{j}}{q_{i}^{\top} q_{i}}, j>i$

orthogonal projection

The orthogonal projector onto the range of q_{1} can be written:

$$
\frac{q_{1} q_{1}^{T}}{q_{1}^{T} q_{1}}
$$

. Application of this operator to a vector a orthogonally projects a onto q_{1}. If we subtract the result from a we are left with a vector that is orthogonal to q_{1}.

$$
q_{1}^{T}\left(I-\frac{q_{1} q_{1}^{T}}{q_{1}^{T} q_{1}}\right) a=0
$$

orthogonal projection

gram-schmidt orthogonalization

```
function \([Q, R]=g s \_q r(A)\)
m = size(A, 1);
\(\mathrm{n}=\operatorname{size}(\mathrm{A}, 2)\);
for \(i=1: n\)
    \(\mathrm{R}(\mathrm{i}, \mathrm{i})=\operatorname{norm}(\mathrm{A}(:, i), 2) ;\)
    \(\mathrm{Q}(:, i)=\mathrm{A}(:, i) . / R(i, i) ;\)
    for \(j=i+1: n\)
        \(R(i, j)=Q(:, i) \quad\) * \(A(:, j) ;\)
        \(A(:, j)=A(:, j)-R(i, j) * Q(:, i) ;\)
        end
3 end
15 end
```

14

using svd for least squares

Recall that a singular value decomposition is given by

$$
A=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
u_{1} & \ldots & u_{m} \\
\vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right]\left[\begin{array}{ccc}
\ldots & v_{1}^{T} & \cdots \\
\ldots & \vdots & \cdots \\
\ldots & v_{n}^{T} & \cdots
\end{array}\right]
$$

where σ_{i} are the singular values.

using svd for least squares

Assume that A has rank k (and hence k nonzero singular values σ_{i}) and recall that we want to minimize

$$
\|r\|_{2}^{2}=\|b-A x\|_{2}^{2}
$$

Substituting the SVD for A we find that

$$
\|r\|_{2}^{2}=\|b-A x\|_{2}^{2}=\left\|b-U S V^{\top} x\right\|_{2}^{2}
$$

where U and V are orthogonal and S is diagonal with k nonzero singular values.

$$
\left\|b-U S V^{\top} x\right\|_{2}^{2}=\left\|U^{\top} b-U^{\top} U S V^{\top} x\right\|_{2}^{2}=\left\|U^{\top} b-S V^{\top} x\right\|_{2}^{2}
$$

using svd for least squares

Let $c=U^{\top} b$ and $y=V^{\top} x$ (and hence $x=V y$) in $\left\|U^{\top} b-S V^{\top} x\right\|_{2}^{2}$. We now have

$$
\|r\|_{2}^{2}=\|c-S y\|_{2}^{2}
$$

Since S has only k nonzero diagonal elements, we have

$$
\|r\|_{2}^{2}=\sum_{i=1}^{k}\left(c_{i}-\sigma_{i} y_{i}\right)^{2}+\sum_{i=k+1}^{n} c_{i}^{2}
$$

which is minimized when $y_{i}=\frac{c_{i}}{\sigma_{i}}$ for $1 \leqslant i \leqslant k$.

using svd for least squares

Theorem
Let A be an $m \times n$ matrix of rank r and let $A=U S V^{\top}$, the singular value decomposition. The least squares solution of the system $A x=b$ is

$$
x=\sum_{i=1}^{r}\left(\sigma_{i}^{-1} c_{i}\right) v_{i}
$$

where $c_{i}=u_{i}^{\top} b$.

