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objectives

• Solve f(x) = 0 using Newton’s method

• Establish properties of Newton’s method

• Apply root-finding to optimization problem

• Solve non-linear least squares using optimization
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some data

What are some properties of this data?
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properties of data

• |yi | 6 1 (approximately)

• Data is apparently periodic

• y(0) ≈ 0

• =⇒ yi ≈ sin(kti)

• Why is this different from Tuesday?

4



linear least squares

Let’s take a step back. Suppose the problem were yi = k sin(ti)
(unknown coefficient): 

sin(t1)
sin(t2)

...

sin(tm)

 k ≈


y1

y2
...

ym


This is just a m × n linear least squares problem where n = 1. (Same
theory applies)
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non-linear least squares

But now we have yi ≈ sin(kti) (unknown basis function):
?

?
...

?

 k ≈


y1

y2
...

ym


Any ideas?
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minimize the residual

min
m∑

i=1

(yi − sin(kti))2

Important: the data (xi , yi) is fixed (we know it). The residual is a
function of k (the unknown).

How do we minimize a function of a single variable?
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minimize the residual

r(k ) =
m∑

i=1

(yi − sin(kti))2

Differentiate with respect to k and set equal to zero.

0 = r ′(k ) = −2
m∑

i=1

ti cos(kti)(yi − sin(kti))

Any volunteers?
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root-finding

• Would to solve f(x) = 0 for general functions

• A value of x that satisfies f(x) = 0 is called a root

• Even for polynomials, cannot be done in finite number of steps
(Abel/Ruffini/Galois)

• Need iterative method
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newton’s method

x1
x2

f(x1)

f(x2)

x3

For a current guess xk , use f(xk ) and the slope f ′(xk ) to predict
where f(x) crosses the x axis.
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newton’s method

Use linear approximation of f(x) centered at xk

f(xk + ∆x) ≈ f(xk ) + f ′(xk )∆x

Substitute ∆x = xk+1 − xk to get

f(xk+1) ≈ f(xk ) + (xk+1 − xk ) f ′(xk )
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newton’s method

Goal is to find x such that f(x) = 0.

Set f(xk+1) = 0 and solve for xk+1

0 = f(xk ) + (xk+1 − xk ) f ′(xk )

or, solving for xk+1

xk+1 = xk −
f(xk )

f ′(xk )
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newton’s method algorithm

1 initialize: x0 = . . .#inital guess
2 for k = 0,1,2, . . .
3 xk+1 = xk − f(xk )/f ′(xk )

4 if converged , stop

5 end
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convergence criteria

An automatic root-finding procedure needs to monitor progress
toward the root and stop when current guess is close enough to real
root.

• Convergence checking will avoid searching to unnecessary
accuracy.

• Check how close successive approximations are to each other

|xk+1 − xk | < δx

• Check how close f(x) is to zero at the current guess.

|f(xk+1)| < δf
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newton’s method properties

• Highly dependent on initial guess

• Quadratic convergence once it is sufficiently close to the root

• HOWEVER: if f ′(x) = 0 as well, only has linear convergence

• Is not guaranteed to converge at all, depending on function or
initial guess
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finding square roots

Newton’s method can be used to find square roots. If x =
√

C, then
x2 − C = 0. Define as a function:

f(x) = x2 − C = 0

First derivative is
f ′(x) = 2x

The iteration formula is

xk+1 = xk −
x2

k − C
2xk

=
1
2

(
xk +

C
xk

)

Also known as the ”Babylonian Method” for computing square roots.
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divergence of newton’s method

x1

f(x1)

f '(x1) ≈ 0

Since
xk+1 = xk −

f(xk )

f ′(xk )

the new guess, xk+1, will be far from the old guess whenever
f ′(xk ) ≈ 0
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newton’s method for optimization

• Minimizing f(x) =⇒ f ′(x) = 0

• So now we are searching for zeros of f ′(x)

• What is Newton’s Method for this?

xk+1 = xk −
f ′(x)
f ′′(x)

• If there are many local minima/maxima then f ′(x) has many
zeros

• Initial guess is very important in this case.

• Actual implementation is virtually the same as root-finding.

• Rather than linear approximation, is using quadratic
approximation to f(x) (first 3 terms of Taylor Series) and uses
minimum as next guess
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newton’s method for optimization

Can now use Newton’s Method to solve non-linear least squares
problem from before

r(k ) =
m∑

i=1

(yi − sin(kti))2

r ′(k ) = −2
m∑

i=1

ti cos(kti)(yi − sin(kti))

r ′′(k ) = 2
m∑

i=1

t2
i
[
(y − sin(kti)) sin(kti) + cos2(kti)

]
(Good thing we have a computer). Iteration:

knew = k −
r ′(k )
r ′′(k )
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newton’s method for higher dimensions

• Newton’s Method can be generalized for functions of several
variables

• Both root finding and optimization are important in higher
dimensions

• Generalizations of first and second derivatives are needed in this
case i.e. Jacobian matrix, gradient, and Hessian matrix
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