newton's method and root-finding

Pete Sentz

Department of Computer Science
University of Illinois at Urbana-Champaign

objectives

- Solve $f(x)=0$ using Newton's method
- Establish properties of Newton's method
- Apply root-finding to optimization problem
- Solve non-linear least squares using optimization

some data

What are some properties of this data?

properties of data

- $\left|y_{i}\right| \leqslant 1$ (approximately)
- Data is apparently periodic
- $y(0) \approx 0$
- $\Longrightarrow y_{i} \approx \sin \left(k t_{i}\right)$
- Why is this different from Tuesday?

linear least squares

Let's take a step back. Suppose the problem were $y_{i}=k \sin \left(t_{i}\right)$ (unknown coefficient):

$$
\left[\begin{array}{c}
\sin \left(t_{1}\right) \\
\sin \left(t_{2}\right) \\
\vdots \\
\sin \left(t_{m}\right)
\end{array}\right] k \approx\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

This is just a $m \times n$ linear least squares problem where $n=1$. (Same theory applies)

non-linear least squares

But now we have $y_{i} \approx \sin \left(k t_{i}\right)$ (unknown basis function):

$$
\left[\begin{array}{c}
? \\
? \\
\vdots \\
?
\end{array}\right] k \approx\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Any ideas?

minimize the residual

$$
\min \sum_{i=1}^{m}\left(y_{i}-\sin \left(k t_{i}\right)\right)^{2}
$$

Important: the data $\left(x_{i}, y_{i}\right)$ is fixed (we know it). The residual is a function of k (the unknown).

How do we minimize a function of a single variable?

minimize the residual

$$
r(k)=\sum_{i=1}^{m}\left(y_{i}-\sin \left(k t_{i}\right)\right)^{2}
$$

Differentiate with respect to k and set equal to zero.

$$
0=r^{\prime}(k)=-2 \sum_{i=1}^{m} t_{i} \cos \left(k t_{i}\right)\left(y_{i}-\sin \left(k t_{i}\right)\right)
$$

Any volunteers?

root-finding

- Would to solve $f(x)=0$ for general functions
- A value of x that satisfies $f(x)=0$ is called a root
- Even for polynomials, cannot be done in finite number of steps (Abel/Ruffini/Galois)
- Need iterative method

newton's method

For a current guess x_{k}, use $f\left(x_{k}\right)$ and the slope $f^{\prime}\left(x_{k}\right)$ to predict where $f(x)$ crosses the x axis.

newton's method

Use linear approximation of $f(x)$ centered at x_{k}

$$
f\left(x_{k}+\Delta x\right) \approx f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) \Delta x
$$

Substitute $\Delta x=x_{k+1}-x_{k}$ to get

$$
f\left(x_{k+1}\right) \approx f\left(x_{k}\right)+\left(x_{k+1}-x_{k}\right) f^{\prime}\left(x_{k}\right)
$$

newton's method

Goal is to find x such that $f(x)=0$.
Set $f\left(x_{k+1}\right)=0$ and solve for x_{k+1}

$$
0=f\left(x_{k}\right)+\left(x_{k+1}-x_{k}\right) f^{\prime}\left(x_{k}\right)
$$

or, solving for x_{k+1}

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

newton's method algorithm

```
initialize: }\mp@subsup{x}{0}{}=\ldots\mathrm{ #inital guess
for k}=0,1,2,
    xk+1}=\mp@subsup{x}{k}{}-f(\mp@subsup{x}{k}{})/\mp@subsup{f}{}{\prime}(\mp@subsup{x}{k}{}
    if converged, stop
end
```


convergence criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop when current guess is close enough to real root.

- Convergence checking will avoid searching to unnecessary accuracy.
- Check how close successive approximations are to each other

$$
\left|x_{k+1}-x_{k}\right|<\delta_{x}
$$

- Check how close $f(x)$ is to zero at the current guess.

$$
\left|f\left(x_{k+1}\right)\right|<\delta_{f}
$$

newton's method properties

- Highly dependent on initial guess
- Quadratic convergence once it is sufficiently close to the root
- HOWEVER: if $f^{\prime}(x)=0$ as well, only has linear convergence
- Is not guaranteed to converge at all, depending on function or initial guess

finding square roots

Newton's method can be used to find square roots. If $x=\sqrt{C}$, then $x^{2}-C=0$. Define as a function:

$$
f(x)=x^{2}-C=0
$$

First derivative is

$$
f^{\prime}(x)=2 x
$$

The iteration formula is

$$
x_{k+1}=x_{k}-\frac{x_{k}^{2}-C}{2 x_{k}}=\frac{1}{2}\left(x_{k}+\frac{C}{x_{k}}\right)
$$

Also known as the "Babylonian Method" for computing square roots.

divergence of newton's method

Since

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

the new guess, x_{k+1}, will be far from the old guess whenever $f^{\prime}\left(x_{k}\right) \approx 0$

newton's method for optimization

- Minimizing $f(x) \Longrightarrow f^{\prime}(x)=0$
- So now we are searching for zeros of $f^{\prime}(x)$
- What is Newton's Method for this?

$$
x_{k+1}=x_{k}-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

- If there are many local minima/maxima then $f^{\prime}(x)$ has many zeros
- Initial guess is very important in this case.
- Actual implementation is virtually the same as root-finding.
- Rather than linear approximation, is using quadratic approximation to $f(x)$ (first 3 terms of Taylor Series) and uses minimum as next guess

newton's method for optimization

Can now use Newton's Method to solve non-linear least squares problem from before

$$
\begin{gathered}
r(k)=\sum_{i=1}^{m}\left(y_{i}-\sin \left(k t_{i}\right)\right)^{2} \\
r^{\prime}(k)=-2 \sum_{i=1}^{m} t_{i} \cos \left(k t_{i}\right)\left(y_{i}-\sin \left(k t_{i}\right)\right) \\
r^{\prime \prime}(k)=2 \sum_{i=1}^{m} t_{i}^{2}\left[\left(y-\sin \left(k t_{i}\right)\right) \sin \left(k t_{i}\right)+\cos ^{2}\left(k t_{i}\right)\right]
\end{gathered}
$$

(Good thing we have a computer). Iteration:

$$
k_{\text {new }}=k-\frac{r^{\prime}(k)}{r^{\prime \prime}(k)}
$$

newton's method for higher dimensions

- Newton's Method can be generalized for functions of several variables
- Both root finding and optimization are important in higher dimensions
- Generalizations of first and second derivatives are needed in this case i.e. Jacobian matrix, gradient, and Hessian matrix

