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semester plan

Tu Nov 10 Least-squares and error

Th Nov 12 Case Study: Cancer Analysis

Tu Nov 17 Building a basis for approximation (interpolation)

Th Nov 19 non-linear Least-squares 1D: Newton

Tu Dec 01 non-linear Least-squares ND: Newton

Th Dec 03 Steepest Decent

Tu Dec 08 Elements of Simulation + Review

Friday December 11 – Tuesday December 15 Final Exam
(computerized facility)
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objectives

• Write a nonlinear least-squares problem with many parameters

• Introduce Newton’s method for n-dimensional optimization

• Build some intuition about minima
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fitting a circle to data

Consider the following data points (xi , yi):

It appears they can be approximated by a circle. How do we find
which one approximates it best?
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fitting a circle to data

What information is required to uniquely determine a circle? 3
numbers are needed:

• x0, the x-coordinate of the center

• y0, the y-coordinate of the center

• r , the radius of the circle.

• Equation: (x − x0)
2 + (y − y0)

2 = r2

Unlike the sine function we saw before the break, we need to
determine 3 parameters, not just one. We must minimize the residual:

R(x0, y0, r) =
n∑

i=1

(
(xi − x0)

2 + (yi − y0)
2 − r2)2

Do you remember how to minimize a function of several variables?
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minimization

A necessary (but not sufficient) condition for a point (x∗, y∗, z∗) to be
a minimum of a function F(x, y, z) is that the gradient of F be equal to
zero at that point.

∇F =

[
∂F
∂x

,
∂F
∂y

,
∂F
∂z

]T

∇F is a vector, and all components must equal zero for a minimum to
occur (this does not guarantee a minimum however!).

Note the similarity between this and a function of 1 variable, where
the first derivate must be zero at a minimum.
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gradient of residual

Remember our formula for the residual:

R(x0, y0, r) =
n∑

i=1

(
(xi − x0)

2 + (yi − y0)
2 − r2)2

Important: The variables for this function are x0, y0, and r because we
don’t know them. The data (xi , yi) is fixed (known).

The gradient is then: [
∂R
∂x0

,
∂R
∂y0

,
∂R
∂r

]T
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gradient of residual

Here is the gradient of the residul in all its glory:−4
∑n

i=1

[(
(xi − x0)

2 + (yi − y0)
2 − r2

)
(xi − x0)

]
−4

∑n
i=1

[(
(xi − x0)

2 + (yi − y0)
2 − r2

)
(yi − y0)

]
−4

∑n
i=1

[(
(xi − x0)

2 + (yi − y0)
2 − r2

)
r
]


Each component of this vector must be equal to zero at a minimum.
We can generalize Newton’s method to higher dimensions in order to
solve this iteratively.

We’ll go over the details of the method in a bit, but let’s see the
highlights for solving this problem.
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newton’s method

Just like 1-D Newton’s method, we’ll need an initial guess. Let’s use
the average x and y coordinates of all data points in order to guess
where the center is. Let’s choose the radius to coincide with the point
farthest from this center:

Not horrible... 9



newton’s method

After a handful of iterations of Newton’s Method, we obtain the
following approximate best fit:
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newton root-finding in 1-dimension

Recall that when applying Newton’s method to 1-dimensional
root-finding, we began with a linear approximation

f(xk + ∆x) ≈ f(xk ) + f ′(xk )∆x

Here we define ∆x := xk+1 − xk . In root-finding, our goal is to find ∆x
such that f(xk + ∆x) = 0. Therefore the new iterate xk+1 at the k -th
iteration of Newton’s method is

xk+1 = xk −
f(xk )

f ′(xk )
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newton optimization in 1-dimension

Now consider Newton’s method for 1-dimension optimization.
• For root-finding, we sought the zeros of f(x).
• For optimization, we seek the zeros of f ′(x).
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newton optimization in 1-dimension

We will need more terms in our approximation, so let us form an
approximation of second order

f(xk + ∆x) ≈ f(xk ) + f ′(xk )∆x + f ′′(xk )(∆x)2

Next, take the partial derivatives of each side with respect to ∆x,
giving

f ′(xk + ∆x) ≈ f ′(xk ) + f ′′(xk )∆x

Our goal is f ′(xk + ∆x) = 0, therefore the k -th iterate should be

xk+1 = xk −
f ′(xk )

f ′′(xk )
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recall application to nonlinear least squares

From last class we had a non-linear least squares problem. We
applied Newton’s method to solve it.

r(k ) =
m∑

i=1

(yi − sin(kti))2

r ′(k ) = −2
m∑

i=1

ti cos(kti)(yi − sin(kti))

r ′′(k ) = 2
m∑

i=1

t2
i
[
(y − sin(kti)) sin(kti) + cos2(kti)

]
Iteration:

knew = k −
r ′(k )
r ′′(k )
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newton optimization in n-dimensions

• How can we generalize to an n-dimensional process?

• Need n-dimensional concept of a derivative, specifically
• The Jacobian, ∇f(x)
• The Hessian, Hf(x) := ∇∇f(x)

Then our second order approximation of a function can be written as

f(xk + ∆x) ≈ f(xk ) +∇f(xk )∆x + Hf(xk )(∆x)2

Again, taking the partials with respect to ∆x and setting the LHS to
zero gives

xk+1 = xk − Hf−1(xk )∇f(xk )
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the jacobian

The Jacobian of a function, ∇f(x), contains all the first order
derivative information about f(x).

For a single function f(x) = f(x1, x2, . . . , xn), the Jacobian is simply
the gradient

∇f(x) =
(
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)
For example:

f(x, y, z) = x2 + 3xy + yz3

∇f(x, y, z) = (2x + 3y, 3x + z3, 3yz2)
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the hessian

Just as the Jacobian provides first-order derivative information, the
Hessian provides all the second-order information

The Hessian of a function can be written out fully as

Hf(x) =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

. . . ∂2f
∂x2∂xn

...
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn


In a concise notation using element-wise notation

Hfi,j(x) =
∂2f
∂xi∂xj
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the hessian

An example is a little more illuminating. Let us continue our example
from before.

f(x, y, z) = x2 + 3xy + yz3

∇f(x, y, z) = (2x + 3y, 3x + z3, 3yz2)

Hf(x, y, z) =

2 3 0
3 0 3z2

0 3z2 6yz
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notes on newton’s method for optimization

• The roots of ∇f correspond to the critical points of f

• But in optimization, we will be looking for a specific type of critical
point (e.g. minima and maxima)

• ∇f = 0 is only a necessary condition for optimization. We must
check the second derivative to confirm the type of critical point.

• x∗ is a minima of f if ∇f(x∗) = 0 and Hf(x∗) > 0
(i.e. positive definite).

• Similarly, for x∗ to be a maxima, then we need Hf(x∗) < 0
(i.e. negative definite).
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notes on newton’s method for optimization

• Newton’s method is dependent on the initial condition used.

• Newton’s method for optimization in n-dimensions requires the
inversion of the Hessian and therefore can be computationally
expensive for large n.
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