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semester plan

Tu Nov 10 Least-squares and error

Th Nov 12 Case Study: Cancer Analysis

Tu Nov 17 Building a basis for approximation (interpolation)
Th Nov 19 non-linear Least-squares 1D: Newton

Tu Dec 01 non-linear Least-squares ND: Newton

Th Dec 03 Steepest Decent

Tu Dec 08 Elements of Simulation + Review

Friday December 11 — Tuesday December 15 Final Exam
(computerized facility)



objectives

e Write a nonlinear least-squares problem with many parameters
e Introduce Newton’s method for n-dimensional optimization

e Build some intuition about minima



fitting a circle to data

Consider the following data points (x;, y;i):
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It appears they can be approximated by a circle
which one approximates it best?

. How do we find



fitting a circle to data

What information is required to uniquely determine a circle? 3
numbers are needed:

e Xp, the x-coordinate of the center

e Vo, the y-coordinate of the center

e r, the radius of the circle.

e Equation: (x —xg)2 + (y — ¥0)? = r?
Unlike the sine function we saw before the break, we need to
determine 3 parameters, not just one. We must minimize the residual:

n

R(xo.yo,r) = ((xi—X0)? + (¥ — ¥0)? — r2)2

i=1

Do you remember how to minimize a function of several variables?



minimization

A necessary (but not sufficient) condition for a point (x*, y*, z*) to be
a minimum of a function F(x, y, z) is that the gradient of F be equal to
zero at that point.

OF OF aF}T

VF: |:ax,ay,az

VF is a vector, and all components must equal zero for a minimum to
occur (this does not guarantee a minimum however!).

Note the similarity between this and a function of 1 variable, where
the first derivate must be zero at a minimum.



gradient of residual

Remember our formula for the residual:

n
2
R(x0, Y0, 1) =D (X —x0)? + (¥i — yo)* — %)
i=1
Important: The variables for this function are xg, yo, and r because we
don’t know them. The data (x;, y;) is fixed (known).

The gradient is then:
dR oR 2R]'
aXo’ ayo' or



gradient of residual

Here is the gradient of the residul in all its glory:

=457 (i —x0)2 + (¥i — Yo)2 — r?) (xi — xo)]
=4y L [((xi—x0)2 + ( :*YO) —r?) (yi — Yo)]
_4Zi:1 [( Xi —Xo)z (yi ) _rz) I’]

Each component of this vector must be equal to zero at a minimum.
We can generalize Newton’s method to higher dimensions in order to
solve this iteratively.

We’ll go over the details of the method in a bit, but let’s see the
highlights for solving this problem.



newton’s method

Just like 1-D Newton’s method, we’ll need an initial guess. Let’s use
the average x and y coordinates of all data points in order to guess
where the center is. Let’s choose the radius to coincide with the point
farthest from this center:

Not horrible... 9



newton’s method

After a handful of iterations of Newton’s Method, we obtain the
following approximate best fit:
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newton root-finding in 1-dimension

Recall that when applying Newton’s method to 1-dimensional
root-finding, we began with a linear approximation

f(xk + Ax) ~ f(xx) + f' (X ) Ax

Here we define Ax := xx.1 — Xk. In root-finding, our goal is to find Ax
such that f(xx + Ax) = 0. Therefore the new iterate xx, 1 at the k-th
iteration of Newton’s method is

F(xk)
f"(xk)

Xk+1 = Xk —




newton optimization in 1-dimension

Now consider Newton’s method for 1-dimension optimization.
e For root-finding, we sought the zeros of f(x).
e For optimization, we seek the zeros of f'(x).

10 The roots of f'are the critical points of f
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newton optimization in 1-dimension

We will need more terms in our approximation, so let us form an
approximation of second order

f(xk + AX) = f(xk) + F'(Xk)AX + £ (x) (Ax)?
Next, take the partial derivatives of each side with respect to Ax,
giving
f'(xx + Ax) ~ ' (xx) + " (x ) Ax

Our goal is f’'(xx + Ax) = 0, therefore the k-th iterate should be

f'(xx)
Xk+1 = Xk — m




recall application to nonlinear least squares

From last class we had a non-linear least squares problem. We
applied Newton’s method to solve it.

m

r(k) =Y _(yi—sin(kt))?

i=1

r'(k) =—2 Z t;cos(kt;)(y; — sin(kt;))

i=1
= ZZI‘2 y — sin(kt;)) sin(kt;) + cos? (kt;)]

lteration:
r'(k)

Know = K ~ g3




newton optimization in n-dimensions

e How can we generalize to an n-dimensional process?
e Need n-dimensional concept of a derivative, specifically

e The Jacobian, Vf(x)
e The Hessian, Hf(x) := VVf(x)

Then our second order approximation of a function can be written as

f(Xk + AX) ~ f(xi) + V(X )AX + Hf (X ) (Ax)?

Again, taking the partials with respect to Ax and setting the LHS to
zero gives

X1 = Xk — HE 1 (X ) VF(xK)




the jacobian

The Jacobian of a function, Vf(x), contains all the first order
derivative information about f(x).

For a single function f(x) = f(xq, X2
the gradient

Vi(x) = (af o af)

0X4 ' 0Xo

For example:

f(x,y,z) =x2+3xy+yz®

Vi(x,y,z) =(2x+3y, 3x+ 2% 3yz?)



the hessian

Just as the Jacobian provides first-order derivative information, the
Hessian provides all the second-order information

The Hessian of a function can be written out fully as

02f 02f 02f

0X10X4 0X10Xo T 0X10Xn
92f 02f 02f

0X20X: 0X20X: T 0X20X

Hf(X) — 2. 1 2 2 2. n
02f 02f 02f

0Xp0Xq 0Xn0Xo o 0Xpn0Xn

In a concise notation using element-wise notation

o2f

Hf;j(x) = Waxj



An example is a little more illuminating. Let us continue our example
from before.

f(x,y,z) =x2+3xy+yz®
Vi(x,y,z) = (2x+3y, 3x+ 2% 3yz?)
3 0
0
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2
Hf(x,y,z) =3
0 322 6yz



notes on newton’s method for optimization

e The roots of Vf correspond to the critical points of f

e But in optimization, we will be looking for a specific type of critical
point (e.g. minima and maxima)

e VI =0is only a necessary condition for optimization. We must
check the second derivative to confirm the type of critical point.

e x*is a minima of f if Vf(x*) =0 and Hf(x*) >0
(i.e. positive definite).

e Similarly, for x* to be a maxima, then we need Hf(x*) <0
(i.e. negative definite).



notes on newton’s method for optimization

o Newton’s method is dependent on the initial condition used.

o Newton’s method for optimization in n-dimensions requires the
inversion of the Hessian and therefore can be computationally
expensive for large n.
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