\#5

Norms
L. Olson

October 1, 2015
Department of Computer Science
University of Illinois at Urbana-Champaign

objectives

- Set up an array of data and measure its "size"
- Construct a "norm" and apply its properties to a problem
- Describe a "matrix norm" or "operator norm"
- Find examples where a matrix norm is appropriate and not appropriate

vector addition and subtraction

Addition and subtraction are element-by-element operations

$$
\begin{aligned}
& c=a+b \Longleftrightarrow \\
& d=a-b \Longleftrightarrow c_{i}=a_{i}+b_{i} \quad i=1, \ldots, n \\
& d_{i}=a_{i}-b_{i} \quad i=1, \ldots, n
\end{aligned}
$$

$$
a=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

$$
a+b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad a-b=\left[\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right]
$$

multiplication by a scalar

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

$$
b=\sigma a \quad \Longleftrightarrow \quad b_{i}=\sigma a_{i} \quad i=1, \ldots, n
$$

$$
a=\left[\begin{array}{l}
4 \\
6 \\
8
\end{array}\right] \quad b=\frac{a}{2}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

vector transpose

The transpose of a row vector is a column vector:

$$
u=[1,2,3] \quad \text { then } \quad u^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Likewise if v is the column vector

$$
v=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \quad \text { then } \quad v^{T}=[4,5,6]
$$

linear combinations

Combine scalar multiplication with addition

$$
\begin{gathered}
\alpha\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right]+\beta\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
\alpha u_{1}+\beta v_{1} \\
\alpha u_{2}+\beta v_{2} \\
\vdots \\
\alpha u_{m}+\beta v_{m}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right] \\
r=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \quad s=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \\
t=2 r+3 s=\left[\begin{array}{r}
-4 \\
2 \\
6
\end{array}\right]+\left[\begin{array}{l}
3 \\
0 \\
9
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
15
\end{array}\right]
\end{gathered}
$$

linear combinations

Any one vector can be created from an infinite combination of other "suitable" vectors.

$$
\begin{aligned}
& w=\left[\begin{array}{l}
4 \\
2
\end{array}\right]=4\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& w=6\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
& w=\left[\begin{array}{l}
2 \\
4
\end{array}\right]-2\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
& w=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]-4\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

linear combinations

Graphical

 interpretation:- Vector tails can be moved to convenient locations
- Magnitude and direction of vectors is preserved

vector inner product

In physics, analytical geometry, and engineering, the dot product has a geometric interpretation

$$
\begin{gathered}
\sigma=x \cdot y \Longleftrightarrow \sigma=\sum_{i=1}^{n} x_{i} y_{i} \\
x \cdot y=\|x\|_{2}\|y\|_{2} \cos \theta
\end{gathered}
$$

vector inner product

The inner product of x and y requires that x be a row vector y be a column vector

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

vector inner product

For two n-element column vectors, u and v, the inner product is

$$
\sigma=u^{T} v \quad \Longleftrightarrow \quad \sigma=\sum_{i=1}^{n} u_{i} v_{i}
$$

The inner product is commutative so that (for two column vectors)

$$
u^{T} v=v^{T} u
$$

vector outer product

The inner product results in a scalar.
The outer product creates a rank-one matrix:

$$
A=u v^{\top} \quad \Longleftrightarrow \quad a_{i, j}=u_{i} v_{j}
$$

Example

Outer product of two 4-element column vectors

$$
\begin{aligned}
u v^{T} & =\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right] \\
& =\left[\begin{array}{llll}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} & u_{1} v_{4} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} & u_{2} v_{4}
\end{array}\right]
\end{aligned}
$$

vector norms

Compare magnitude of scalars with the absolute value

$$
|\alpha|>|\beta|
$$

Compare magnitude of vectors with norms

$$
\|x\|>\|y\|
$$

There are several ways to compute $\|x\|$. In other words the size of two vectors can be compared with different norms.

vector norms

Consider two element vectors, which lie in a plane

Use geometric lengths to represent the magnitudes of the vectors
$\ell_{a}=\sqrt{4^{2}+2^{2}}=\sqrt{20}, \quad \ell_{b}=\sqrt{2^{2}+4^{2}}=\sqrt{20}, \quad \ell_{c}=\sqrt{2^{2}+1^{2}}=\sqrt{ }$
We conclude that

$$
\ell_{a}=\ell_{b} \quad \text { and } \quad \ell_{a}>\ell_{c}
$$

or

$$
\|a\|=\|b\| \quad \text { and } \quad\|a\|>\|c\|
$$

the l_{2} norm

The notion of a geometric length for 2D or 3D vectors can be extended vectors with arbitrary numbers of elements.

The result is called the Euclidian or L_{2} norm:

$$
\|x\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

The L_{2} norm can also be expressed in terms of the inner product

$$
\|x\|_{2}=\sqrt{x \cdot x}=\sqrt{x^{\top} x}
$$

p-norms

For any positive integer p

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

The L_{1} norm is sum of absolute values

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

The L_{∞} norm or max norm is

$$
\|x\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)=\max _{i}\left(\left|x_{i}\right|\right)
$$

Although p can be any positive number, $p=1,2, \infty$ are most commonly used.

defining a p-norm

These must hold for any x and y

1. $\|x\|>0$ if $x \neq 0$
2. $\|\alpha x\|=|\alpha| \cdot\|x\|$ for an scalar α
3. $\|x+y\| \leqslant\|x\|+\|y\|$ (this is called the triangle inequality)

defining a p-norm for a matrix

If A is a matrix, then we use the vector p-norm to define a similar matrix norm:

$$
\|A\|_{p}=\max _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}
$$

application of norms

Are two vectors (nearly) equal?

Floating point comparison of two scalars with absolute value:

$$
\frac{|\alpha-\beta|}{|\alpha|}<\delta
$$

where δ is a small tolerance.
Comparison of two vectors with norms:

$$
\frac{\|y-z\|}{\|z\|}<\delta
$$

application of norms

Notice that

$$
\frac{\|y-z\|}{\|z\|}<\delta
$$

is not equivalent to

$$
\frac{\|y\|-\|z\|}{\|z\|}<\delta .
$$

This comparison is important in convergence tests for sequences of vectors.

application of norms

Creating a Unit Vector

Given $u=\left[u_{1}, u_{2}, \ldots, u_{m}\right]^{T}$, the unit vector in the direction of u is

$$
\hat{u}=\frac{u}{\|u\|_{2}}
$$

Proof:

$$
\|\hat{u}\|_{2}=\left\|\frac{u}{\|u\|_{2}}\right\|_{2}=\frac{1}{\|u\|_{2}}\|u\|_{2}=1
$$

The following are not unit vectors

$$
\frac{u}{\|u\|_{1}} \quad \frac{u}{\|u\|_{\infty}}
$$

orthogonal vectors

From geometric interpretation of the inner product

$$
\begin{gathered}
u \cdot v=\|u\|_{2}\|v\|_{2} \cos \theta \\
\cos \theta=\frac{u \cdot v}{\|u\|_{2}\|v\|_{2}}=\frac{u^{T} v}{\|u\|_{2}\|v\|_{2}}
\end{gathered}
$$

Two vectors are orthogonal when $\theta=\pi / 2$ or $u \cdot v=0$.
In other words

$$
u^{T} v=0
$$

if and only if u and v are orthogonal.

orthonormal vectors

Orthonormal vectors are unit vectors that are orthogonal.
A unit vector has an L_{2} norm of one.
The unit vector in the direction of u is

$$
\hat{u}=\frac{u}{\|u\|_{2}}
$$

Since

$$
\|u\|_{2}=\sqrt{u \cdot u}
$$

it follows that $u \cdot u=1$ if u is a unit vector.

notation

The matrix A with m rows and n columns looks like:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & & \cdots & a_{m n}
\end{array}\right]
$$

$a_{i j}=$ element in row i, and column j

matrices consist of row and column vectors

As a collection of column vectors

$$
A=\left[\begin{array}{l|l|l|l}
& & & \\
& a_{(1)} & a_{(2)} & \cdots \\
& & & \\
& & & \\
(n) \\
& &
\end{array}\right]
$$

As a collection of row vectors

A prime is used to designate a row vector on this and the following pages.

preview of the row and column view

Matrix and
vector operations

$$
\uparrow
$$

Row and column
operations

$$
\downarrow
$$

Element-by-element operations

matrix operations

Addition and subtraction

$$
C=A+B
$$

or

$$
c_{i, j}=a_{i, j}+b_{i, j} \quad i=1, \ldots, m ; j=1, \ldots, n
$$

Multiplication by a Scalar

$$
B=\sigma A
$$

or

$$
b_{i, j}=\sigma a_{i, j} \quad i=1, \ldots, m ; j=1, \ldots, n
$$

Note
Commas in subscripts are necessary when the subscripts are assigned numerical values. For example, $a_{2,3}$ is the row 2 , column 3 element of matrix A, whereas a_{23} is the 23 rd element of vector a. When variables appear in indices, such as $a_{i j}$ or $a_{i, j}$, the comma is

matrix transpose

$$
B=A^{T}
$$

or

$$
b_{i, j}=a_{j, i} \quad i=1, \ldots, m ; j=1, \ldots, n
$$

matrix-vector product

- The Column View
- gives mathematical insight
- The Row View
- easy to do by hand
- The Vector View
- A square matrix rotates and stretches a vector

column view of matrix-vector product

Consider a linear combination of a set of column vectors
$\left\{a_{(1)}, a_{(2)}, \ldots, a_{(n)}\right\}$. Each $a_{(j)}$ has m elements
Let x_{i} be a set (a vector) of scalar multipliers

$$
x_{1} a_{(1)}+x_{2} a_{(2)}+\ldots+x_{n} a_{(n)}=b
$$

or

$$
\sum_{j=1}^{n} a_{(j)} x_{j}=b
$$

Expand the (hidden) row index

$$
x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

column view of matrix-vector product

Form a matrix with the $a_{(j)}$ as columns

$$
\left[\begin{array}{c|c|c|c}
& & & \\
a_{(1)} & a_{(2)} & \cdots & a_{(n)} \\
& & & \left.\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
\\
b
\end{array}\right] .\right] .
\end{array}\right.
$$

Or, writing out the elements

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& & & \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

column view of matrix-vector product

Thus, the matrix-vector product is

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& & & \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Save space with matrix notation

$$
A x=b
$$

column view of matrix-vector product

The matrix-vector product $b=A x$ produces a vector b from a linear combination of the columns in A.

$$
b=A x \quad \Longleftrightarrow \quad b_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

where x and b are column vectors

column view of matrix-vector product

Listing 1: Matrix-Vector Multiplication by Columns

$$
\begin{aligned}
& \text { initialize: } b=\operatorname{zeros}(m, 1) \\
& \text { for } j=1, \ldots, n \\
& \text { for } i=1, \ldots, m \\
& \quad b(i)=A(i, j) x(j)+b(i) \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

compatibility requirement

Inner dimensions must agree

$$
\begin{array}{cccc}
A & x & = & b \\
{[m \times n]}
\end{array} \begin{array}{cc}
{[n \times 1]} & = \\
{[m \times 1]}
\end{array}
$$

row view of matrix-vector product

Consider the following matrix-vector product written out as a linear combination of matrix columns

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
5 & 0 & 0 & -1 \\
-3 & 4 & -7 & 1 \\
1 & 2 & 3 & 6
\end{array}\right]\left[\begin{array}{r}
4 \\
2 \\
-3 \\
-1
\end{array}\right]} \\
& =4\left[\begin{array}{r}
5 \\
-3 \\
1
\end{array}\right]+2\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]-3\left[\begin{array}{r}
0 \\
-7 \\
3
\end{array}\right]-1\left[\begin{array}{r}
-1 \\
1 \\
6
\end{array}\right]
\end{aligned}
$$

This is the column view.

row view of matrix-vector product

Now, group the multiplication and addition operations by row:

$$
\begin{aligned}
& 4\left[\begin{array}{r}
5 \\
-3 \\
1
\end{array}\right]+2\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]-3\left[\begin{array}{r}
0 \\
-7 \\
3
\end{array}\right]-1\left[\begin{array}{r}
-1 \\
1 \\
6
\end{array}\right] \\
&=\left[\begin{array}{rrrrr}
(5)(4) & +(0)(2) & + & (0)(-3) & + \\
(-3)(4) & +(4)(2) & + & (-7)(-3) & + \\
(1)(4) & + & (2)(2) & + & (3)(-3) \\
(1) & + & (6)(-1)
\end{array}\right]=\left[\begin{array}{r}
21 \\
16 \\
-7
\end{array}\right]
\end{aligned}
$$

Final result is identical to that obtained with the column view.

row view of matrix-vector product

Product of a 3×4 matrix, A, with a 4×1 vector, x, looks like

$$
\left[\begin{array}{c}
a_{(1)}^{\prime} \\
a_{(3)}^{\prime}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
a_{(1)}^{\prime} \cdot x \\
a_{(2)}^{\prime} \cdot x \\
a_{(3)}^{\prime} \cdot x
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

where $a_{(1)}^{\prime}, a_{(2)}^{\prime}$, and $a_{(3)}^{\prime}$, are the row vectors constituting the A matrix.

The matrix-vector product $b=A x$ produces elements in b by forming inner products of the rows of A with x.

row view of matrix-vector product

vector view of matrix-vector product

If A is square, the product $A x$ has the effect of stretching and rotating x.

Pure stretching of the column vector

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

Pure rotation of the column vector

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

vector-matrix product

Matrix-vector product

Vector-Matrix product

vector-matrix product

Compatibility Requirement: Inner dimensions must agree

$$
\left.\begin{array}{cccc}
u & A & = & v \\
{[1 \times m]}
\end{array} \begin{array}{c}
{[m \times n]}
\end{array}\right)=\left[\begin{array}{ll}
\\
{[1 \times n]}
\end{array}\right.
$$

matrix-matrix product

Computations can be organized in six different ways We'll focus on just two

- Column View - extension of column view of matrix-vector product
- Row View - inner product algorithm, extension of column view of matrix-vector product

column view of matrix-matrix product

The product $A B$ produces a matrix C. The columns of C are linear combinations of the columns of A.

$$
A B=C \quad \Longleftrightarrow \quad c_{(j)}=A b_{(j)}
$$

$c_{(j)}$ and $b_{(j)}$ are column vectors.

The column view of the matrix-matrix product $A B=C$ is helpful because it shows the relationship between the columns of A and the columns of C.

inner product (row) view of matrix-matrix product

The product $A B$ produces a matrix C. The $c_{i j}$ element is the inner product of row i of A and column j of B.

$$
A B=C \quad \Longleftrightarrow \quad c_{i j}=a_{(i)}^{\prime} b_{(j)}
$$

$a_{(i)}^{\prime}$ is a row vector, $b_{(j)}$ is a column vector.

The inner product view of the matrix-matrix product is easier to use for hand calculations.

matrix-matrix product summary

The Matrix-vector product looks like:

$$
\left[\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right]\left[\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right]=\left[\begin{array}{l}
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}\right]
$$

The vector-Matrix product looks like:

$$
\left[\begin{array}{llll}
\bullet & \bullet & \bullet & \bullet
\end{array}\right]\left[\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right]=\left[\begin{array}{lll}
\bullet & \bullet & \bullet
\end{array}\right]
$$

matrix-matrix product summary

The Matrix-Matrix product looks like:

$$
\left[\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right]\left[\begin{array}{llll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{array}\right]=\left[\begin{array}{llll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{array}\right]
$$

matrix-matrix product summary

Compatibility Requirement

$$
\left.\begin{array}{cccc}
A & B & = & C \\
{[m \times r]}
\end{array} \begin{array}{c}
{[r \times n]}
\end{array}\right)=[m \times n] .
$$

Inner dimensions must agree
Also, in general

$$
A B \neq B A
$$

linear independence

Two vectors lying along the same line are not independent

$$
u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad v=-2 u=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right]
$$

Any two independent vectors, for example,

$$
v=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

define a plane. Any other vector in this plane of v and w can be represented by

$$
x=\alpha v+\beta w
$$

x is linearly dependent on v and w because it can be formed by a linear combination of v and w.

linear independence

A set of vectors is linearly independent if it is impossible to use a linear combination of vectors in the set to create another vector in the set.

Linear independence is easy to see for vectors that are orthogonal, for example,

$$
\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{r}
0 \\
-3 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

are linearly independent.

linear independence

Consider two linearly independent vectors, u and v.
If a third vector, w, cannot be expressed as a linear combination of u and v, then the set $\{u, v, w\}$ is linearly independent.
In other words, if $\{u, v, w\}$ is linearly independent then

$$
\alpha u+\beta v=\delta w
$$

can be true only if $\alpha=\beta=\delta=0$.
More generally, if the only solution to

$$
\begin{equation*}
\alpha_{1} v_{(1)}+\alpha_{2} v_{(2)}+\cdots+\alpha_{n} v_{(n)}=0 \tag{1}
\end{equation*}
$$

is $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$, then the set $\left\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\right\}$ is linearly independent. Conversely, if equation (1) is satisfied by at least one nonzero α_{i}, then the set of vectors is linearly dependent.

linear independence

Let the set of vectors $\left\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\right\}$ be organized as the columns of a matrix. Then the condition of linear independence is

$$
\left[\begin{array}{l|l|l|l}
& & & \tag{2}\\
v_{(1)} & v_{(2)} & \cdots & v_{(n)} \\
& &
\end{array}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]\right.
$$

The columns of the $m \times n$ matrix, A, are linearly independent if and only if $x=(0,0, \ldots, 0)^{T}$ is the only n element column vector that satisfies $A x=0$.

spaces and subspaces

Group vectors according to number of elements they have. Vectors from these different groups cannot be mixed.
$\mathbf{R}^{1}=$ Space of all vectors with one element.
These vectors define the points along a line.
$\mathbf{R}^{2}=$ Space of all vectors with two elements.
These vectors define the points in a plane.
$\mathbf{R}^{n}=$ Space of all vectors with n elements.
These vectors define the points in an n-dimensional space (hyperplane).

subspaces

The three vectors
$u=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \quad v=\left[\begin{array}{r}-2 \\ 1 \\ 3\end{array}\right], \quad w=\left[\begin{array}{r}3 \\ 1 \\ -3\end{array}\right]$
lie in the same plane. The vectors have three elements each, so they belong to \mathbf{R}^{3}, but they span a subspace of \mathbf{R}^{3}.

basis and dimension of a subspace

- A basis for a subspace is a set of linearly independent vectors that span the subspace.
- Since a basis set must be linearly independent, it also must have the smallest number of vectors necessary to span the space. (Each vector makes a unique contribution to spanning some other direction in the space.)
- The number of vectors in a basis set is equal to the dimension of the subspace that these vectors span.
- Mutually orthogonal vectors (an orthogonal set) form convenient basis sets, but basis sets need not be orthogonal.

subspaces associated with matrices

The matrix-vector product

$$
y=A x
$$

creates y from a linear combination of the columns of A
The column vectors of A form a basis for the column space or range of A.

matrix rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- $\operatorname{rank}(A)$ is the dimension of the column space of A.
- Numerical computation of $\operatorname{rank}(A)$ is tricky due to roundoff.

Consider

$$
u=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Do these vectors span \mathbf{R}^{3} ?

matrix rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- $\operatorname{rank}(A)$ is the dimension of the column space of A.
- Numerical computation of $\operatorname{rank}(A)$ is tricky due to roundoff.

Consider

$$
u=\left[\begin{array}{c}
1 \\
0 \\
0.00001
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Do these vectors span \mathbf{R}^{3} ?

matrix rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- $\operatorname{rank}(A)$ is the dimension of the column space of A.
- Numerical computation of $\operatorname{rank}(A)$ is tricky due to roundoff.

Consider

$$
u=\left[\begin{array}{c}
1 \\
0 \\
\varepsilon_{m}
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Do these vectors span \mathbf{R}^{3} ?

