orthogonalization

L. Olson

October 27, 2015

Department of Computer Science
University of Illinois at Urbana-Champaign

objectives

- Revisit SVD and Orthogonal Matrices
- Create orthogonal vectors
- Outline the Gram-Schmidt algorithm for orthogonalization

normal equations: conditioning

The normal equations tend to worsen the condition of the matrix.

Theorem

$$
\operatorname{cond}\left(A^{T} A\right)=(\operatorname{cond}(A))^{2}
$$

$1 \mathrm{~A}=\mathrm{np} . \mathrm{random} . \operatorname{rand}(10,10)$
2 print (np.linalg. cond(A))
з print(np.linalg.cond(A.T.dot(A)))
4
$5 \quad 50.0972712517$
2509.73658686

other approaches

- QR factorization.
- For $A \in \mathbb{R}^{m \times n}$, factor $A=Q R$ where
- Q is an $m \times m$ orthogonal matrix
- R is an $m \times n$ upper triangular matrix (since R is an $m \times n$ upper triangular matrix we can write $R=\left[\begin{array}{c}R^{\prime} \\ 0\end{array}\right]$ where R is $n \times n$ upper triangular and 0 is the $(m-n) \times n$ matrix of zeros)
- SVD - singular value decomposition
- For $A \in \mathbb{R}^{m \times n}$, factor $A=U S V^{\top}$ where
- U is an $m \times m$ orthogonal matrix
- V is an $n \times n$ orthogonal matrix
- S is an $m \times n$ diagonal matrix whose elements are the singular values.

orthogonal matrices

Definition

A matrix Q is orthogonal if

$$
Q^{T} Q=Q Q^{T}=1
$$

Orthogonal matrices preserve the Euclidean norm of any vector v,

$$
\|Q v\|_{2}^{2}=(Q v)^{\top}(Q v)=v^{\top} Q^{\top} Q v=v^{\top} v=\|v\|_{2}^{2}
$$

gram-schmidt orthogonalization

One way to obtain the $Q R$ factorization of a matrix A is by Gram-Schmidt orthogonalization.

We are looking for a set of orthogonal vectors q that span the range of A.

For the simple case of 2 vectors $\left\{a_{1}, a_{2}\right\}$, first normalize a_{1} and obtain

$$
q_{1}=\frac{a_{1}}{\left\|a_{1}\right\|}
$$

Now we need q_{2} such that $q_{1}^{T} q_{2}=0$ and $q_{2}=a_{2}+c q_{1}$. That is,

$$
R\left(q_{1}, q_{2}\right)=R\left(a_{1}, a_{2}\right)
$$

Enforcing orthogonality gives:

$$
q_{1}^{T} q_{2}=0=q_{1}^{T} a_{2}+c q_{1}^{T} q_{1}
$$

gram-schmidt orthogonalization

$$
q_{1}^{T} q_{2}=0=q_{1}^{T} a_{2}+c q_{1}^{T} q_{1}
$$

Solving for the constant c.

$$
c=-\frac{q_{1}^{\top} a_{2}}{q_{1}^{\top} q_{1}}
$$

reformulating q_{2} gives.

$$
q_{2}=a_{2}-\frac{q_{1}^{\top} a_{2}}{q_{1}^{\top} q_{1}} q_{1}
$$

Adding another vector a_{3} and we have for q_{3},

$$
q_{3}=a_{3}-\frac{q_{2}^{\top} a_{3}}{q_{2}^{\top} q_{2}} q_{2}-\frac{q_{1}^{\top} a_{3}}{q_{1}^{\top} q_{1}} q_{1}
$$

Repeating this idea for n columns gives us Gram-Schmidt orthogonalization.

gram-schmidt orthogonalization

Since R is upper triangular and $A=Q R$ we have

$$
\begin{aligned}
a_{1} & =q_{1} r_{11} \\
a_{2} & =q_{1} r_{12}+q_{2} r_{22} \\
\vdots & =\vdots \\
a_{n} & =q_{1} r_{1 n}+q_{2} r_{2 n}+\ldots+q_{n} r_{n n}
\end{aligned}
$$

From this we see that $r_{i j}=\frac{q_{i}^{\top} a_{j}}{q_{i}^{\top} q_{i}}, j>i$

orthogonal projection

The orthogonal projector onto the range of q_{1} can be written:

$$
\frac{q_{1} q_{1}^{T}}{q_{1}^{T} q_{1}}
$$

. Application of this operator to a vector a orthogonally projects a onto q_{1}. If we subtract the result from a we are left with a vector that is orthogonal to q_{1}.

$$
q_{1}^{T}\left(I-\frac{q_{1} q_{1}^{T}}{q_{1}^{T} q_{1}}\right) a=0
$$

gram-schmidt orthogonalization

```
def qr(A):
Q = np.zeros(A.shape)
    for k in range(A.shape[1]):
        avec = A[:, k]
        q = avec
        for j in range(k):
        q = q - np.dot(avec, Q[:,j])*Q[:,j]
```

