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• randomness

• reproducibility

• designing an experiment
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the scientific method
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errors

• How do I classify my method?

• Goal: determine how the error |f (x)− pn(x)| behaves relative to n

(and f ).

• Goal: determine how the cost of computing pn(x) behave relative to

n (and f ).

• for f (x) = 1
1−x we have

pn =
n∑

k=0

xk = 1 + x + x2 + . . .

• so

en = |f (x)− pn(x)|

• Is en ∼ 1/nr?

• Is en ∼ 1/
√
n?

• Is en ∼ 1/n!?
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timing

• mymethod() takes x seconds

• How long does it take in general?

• If the data input is of size n, how long should it take?

• n2?

• n!?

• 10n?
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big-o

How to measure the impact of n on algorithmic cost?

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) | ∃c , n0 > 0 : 0 ≤ f (n) ≤ cg(n), ∀n ≥ n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 ≤ f (n) ≤
cg(n) is satisfied.

• assume non-negative functions (otherwise add | · |) to the definitions

• f (n) ∈ O(g(n)) represents an asymptotic upper bound on f (n) up

to a constant

• example: f (n) = 3
√
n + 2 log n + 8n + 85n2 ∈ O(n2)
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big-o (omicron)

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) | ∃c , n0 > 0 : 0 ≤ f (n) ≤ cg(n), ∀n ≥ n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 ≤ f (n) ≤
cg(n) is satisfied.
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big-omega

Ω(·)
Let g(n) be a function of n. Then define

Ω(g(n)) = {f (n) | ∃c , n0 > 0 : 0 ≤ cg(n) ≤ f (n), ∀n ≥ n0}

That is, f (n) ∈ Ω(g(n)) if there is a constant c such that 0 ≤ cg(n) ≤ f (n)

is satisfied.
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big-theta

Θ(·)
Let g(n) be a function of n. Then define

Θ(g(n)) = {f (n) | ∃c1, c2, n0 > 0 : 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0}

Equivalently, Θ(g(n)) = O(g(n)) ∩ Ω(g(n)).
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algebraic convergence (j. p. boyd)

Definition

The Algebraic Index of Convergence α is the largest number for which

lim
n→∞

|an|nα <∞

where an are the coefficients in the sequence. Alternatively, α is the alge-

braic index if

an ∼ O(1/nα)
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exponential convergence (j. p. boyd)

Definition

If the algebraic index α is unbounded (i.e. an decrease faster than 1/nα for

any finite α), then the sequence converges exponentially (a.k.a. spectrally).

Alternatively, the sequence converges exponentially if for constants q and

β

an ∼ O(e−qn
β

)

where β is the exponential index of convergence and

β = lim
n→∞

log | log(|an|)|
log(n)
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rates of exponential convergence (j. p. boyd)

Definition

A sequence an has supergeometric, geometric, or subgeometric if

lim
n→∞

log(|an|)/n =


∞, supergeometric

contant, geometric

0, subgeometric

or, alternatively,

an ∼ O(e−(n/j) log(n)) : supergeometric

an ∼ O(e−qn) : geometric

β < 1 : subgeometric
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asymptotic rate of geometric convergence (j. p. boyd)

definition

If a sequence an has geometric convergence (β = 1) so that

an ∼ O(e−nµ)

then the asymptotic rate of geometric convergence is µ. Alternatively,

µ = lim
n→∞
{− log |an|/n}
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2.4. CONVERGENCE ORDER 27

Definition 6 (ASYMPTOTIC RATE OF GEOMETRIC CONVERGENCE ) If a series has ge-
ometric convergence, that is, if an expansion has an exponential index of convergence r = 1 so that

an ∼ [ ] exp(−nµ) (2.22)

where an are the spectral coefficients, µ is a constant, and [ ] denotes unspecified factors that vary
more slowly with n than the exponential (such as nk for some k), then the ASYMPTOTIC RATE
OF GEOMETRIC CONVERGENCE is µ. Equivalently,

µ = lim
n→∞

{− log | an | /n} (2.23)

This definition is meaningful only for geometrically converging series; it does not apply when the
algebraic index of convergence is < ∞ nor when the exponential index of convergence r < 1.

For power series, µ is simply the logarithm of the radius of convergence. Later in the
chapter, we shall explain how to calculate µ for Fourier and Chebyshev series in terms of
the singularities of the function being expanded.

2.4 Graphical Interpretation of Orders of Convergence

These abstract concepts become clearer with graphs. On a LOG-LINEAR graph, for example,
the coefficients of a GEOMETRICALLY converging series will ASYMPTOTE to a STRAIGHT
LINE as shown by the solid curve in Fig. 2.5. “Supergeometric” convergence can then
be graphically defined as coefficients whose curve develops a more and more negative
slope (rather than a constant slope) on a log-linear graph. Similarly, subgeometric and
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Figure 2.5: log | an | versus n for four rates of convergence. Circles: algebraic convergence,
such as an ∼ 1/n2. Dashed: subgeometric convergence, such as an ∼ exp(−1.5 n2/3). Solid:
geometric convergence, such as exp(−µ n) for any positive µ. Pluses: supergeometric, such
as an ∼ exp(−n log(n) ) or faster decay.
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28 CHAPTER 2. CHEBYSHEV & FOURIER SERIES
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Figure 2.6: Same as previous figure except that the graph is log-log: the degree of the
spectral coefficient n is now plotted on a logarithmic scale, too.
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Figure 2.7: Spectral coefficients for two series. Upper curve: an = 1/n2. Lower curve:
an = exp(−n) + 10−8/n2.
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2.4. CONVERGENCE ORDER 29
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Figure 2.8: Spectral coefficients for three geometrically converging series. Although the
three sets of coefficients differ through algebraic coefficients — the top curve is larger by
n2 than the middle curve, which in turn is larger by a factor of n log(n) than the bottom
curve — the exponential dependence on n is the same for all. Consequently, all three sets of
coefficients asymptote to parallel lines on this log-linear plot.
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Figure 2.9: Solid: logarithm of the absolute value of the spectral coefficients of a
geometrically-converging series whose coefficients oscillate with degree n. Dashed: the
“envelope” of the spectral coefficients.
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randomness

• Randomness ≈ unpredictability

• One view: a sequence is random if it has no shorter description

• Physical processes, such as flipping a coin or tossing dice, are

deterministic with enough information about the governing

equations and initial conditions.

• But even for deterministic systems, sensitivity to the initial

conditions can render the behavior practically unpredictable.

• we need random simulation methods

http://www.xkcd.com/221/
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randomness is easy, right?

• In May, 2008, Debian announced a vulnerability with OpenSSL: the

OpenSSL pseudo-random number generator

• the seeding process was compromised (2 years)

• only 32,767 possible keys

• seeding based on process ID (this is not entropy!)

• all SSL and SSH keys from 9/2006 - 5/2008 regenerated

• all certificates recertified

• Cryptographically secure pseudorandom number generator

(CSPRNG) are necessary for some apps

• Other apps rely less on true randomness
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repeatability

• With unpredictability, true randomness is not repeatable

• ...but lack of repeatability makes testing/debugging difficult

• So we want repeatability, but also independence of the trials

1 >>>> np.random.seed (1234)
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pseudorandom numbers

Computer algorithms for random number generations are deterministic

• ...but may have long periodicity (a long time until an apparent

pattern emerges)

• These sequences are labeled pseudorandom

• Pseudorandom sequences are predictable and reproducible (this is

mostly good)
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random number generators

Properties of a good random number generator:

Random pattern: passes statistical tests of randomness

Long period: long time before repeating

Efficiency: executes rapidly and with low storage

Repeatability: same sequence is generated using same initial states

Portability: same sequences are generated on different architectures
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random number generators

• Early attempts relied on complexity to ensure randomness

• “midsquare” method: square each member of a sequence and take

the middle portion of the results as the next member of the sequence

• ...simple methods with a statistical basis are preferable
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linear congruential generators

• Congruential random number generators are of the form:

xk = (axk−1 + c) ( mod M)

where a and c are integers given as input.

• x0 is called the seed

• Integer M is the largest integer representable (e.g. 231 − 1)

• Quality depends on a and c . The period will be at most M.

Example

Let a = 13, c = 0, m = 31, and x0 = 1.

1, 13, 14, 27, 10, 6, . . .

This is a permutation of integers from 1, . . . , 30, so the period is m − 1.
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history

• IBM used Scientific Subroutine Package (SSP) in the 1960’s the

mainframes.

• Their random generator, rnd used a = 65539, c = 0, and m = 231.

• arithmetic mod 231 is done quickly with 32 bit words.

• multiplication can be done quickly with a = 216 + 3 with a shift and

short add.

• Notice (mod m):

xk+2 = 6xk+1 − 9xk

...strong correlation among three successive integers
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history

• Matlab used a = 75, c = 0, and m = 231 − 1 for a while

• period is m − 1.

• this is no longer sufficient
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what’s used?

Two popular methods:

1. Method of Marsaglia (period ≈ 21430).

1 Initialize x0, . . . , x3 and c to random values given a seed

2

3 Let s = 2111111111xn−4 + 1492xn−31776xn−2 + 5115xn−1 + c

4

5 Compute xn = s mod 232

6

7 c = floor(s/232)

2. rand() in Unix uses a = 1103515245, c = 12345, m = 231.

Even the Marsaglia method produces points in n − D on only a small

number of hyperplanes.

In general, the digits in random numbers are not themselves random...some

patterns reoccur much more often.
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linear congruential generators

• sensitive to a and c

• be careful with supplied random functions on your system

• period is M

• standard division is necessary if generating floating points in [0, 1).
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fibonacci

• produce floating-point random numbers directly using differences,

sums, or products.

• Typical subtractive generator:

xk = xk−17 − x5

with “lags” of 17 and 5.

• Lags much be chosen very carefully

• negative results need fixing

• more storage needed than congruential generators

• no division needed

• very very good statistical properties

• long periods since repetition does not imply a period
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sampling over intervals

If we need a uniform distribution over [a, b), then we modify xk on [0, 1)

by

(b − a)xk + a
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non-uniform distributions

• sampling nonuniform distributions is much more difficult

• if the cumulative distribution function is invertible, then we can

generate the non-uniform sample from the uniform:

f (t) = λe−λt , t > 0

thus

yk = − log(1− xk)/λ

where xk is uniform in [0, 1).

• ...not so easy in general
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quasi-random sequences

• For some applications, reasonable uniform coverage of the sample is

more important than the “randomness”

• True random samples often exhibit clumping

• Perfectly uniform samples uses a uniform grid, but does not scale

well at high dimensions

• quasi-random sequences attempt randomness while maintaining

coverage
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quasi-random sequences

• quasi random sequences are not random, but give random

appearance

• by design, the points avoid each other, resulting in no clumping
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