\# 4
Randomness and Simulation

L. Olson

September 8, 2015
Department of Computer Science
University of Illinois at Urbana-Champaign

- randomness
- reproducibility
- designing an experiment

the scientific method

The Scientific Method as an Ongoing Process

errors

- How do I classify my method?
- Goal: determine how the error $\left|f(x)-p_{n}(x)\right|$ behaves relative to n (and f).
- Goal: determine how the cost of computing $p_{n}(x)$ behave relative to $n($ and $f)$.
- for $f(x)=\frac{1}{1-x}$ we have

$$
p_{n}=\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\ldots
$$

- so

$$
e_{n}=\left|f(x)-p_{n}(x)\right|
$$

- Is $e_{n} \sim 1 / n^{r}$?
- Is $e_{n} \sim 1 / \sqrt{n}$?
- Is $e_{n} \sim 1 / n!$?
- mymethod() takes x seconds
- How long does it take in general?
- If the data input is of size n, how long should it take?
- n^{2} ?
- n!?
- 10^{n} ?

How to measure the impact of n on algorithmic cost?
$\mathcal{O}(\cdot)$
Let $g(n)$ be a function of n. Then define

$$
\mathcal{O}(g(n))=\left\{f(n) \mid \exists c, n_{0}>0: 0 \leq f(n) \leq c g(n), \forall n \geq n_{0}\right\}
$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \leq f(n) \leq$ $\operatorname{cg}(n)$ is satisfied.

- assume non-negative functions (otherwise add $|\cdot|$) to the definitions
- $f(n) \in \mathcal{O}(g(n))$ represents an asymptotic upper bound on $f(n)$ up to a constant
- example: $f(n)=3 \sqrt{n}+2 \log n+8 n+85 n^{2} \in \mathcal{O}\left(n^{2}\right)$

big-o (omicron)

$\mathcal{O}(\cdot)$
Let $g(n)$ be a function of n. Then define

$$
\mathcal{O}(g(n))=\left\{f(n) \mid \exists c, n_{0}>0: 0 \leq f(n) \leq c g(n), \forall n \geq n_{0}\right\}
$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \leq f(n) \leq$ $\operatorname{cg}(n)$ is satisfied.

big-omega

$\Omega(\cdot)$
Let $g(n)$ be a function of n. Then define

$$
\Omega(g(n))=\left\{f(n) \mid \exists c, n_{0}>0: 0 \leq c g(n) \leq f(n), \forall n \geq n_{0}\right\}
$$

That is, $f(n) \in \Omega(g(n))$ if there is a constant c such that $0 \leq c g(n) \leq f(n)$ is satisfied.

big-theta

$\Theta(\cdot)$
Let $g(n)$ be a function of n. Then define
$\Theta(g(n))=\left\{f(n) \mid \exists c_{1}, c_{2}, n_{0}>0: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}$

Equivalently, $\Theta(g(n))=\mathcal{O}(g(n)) \cap \Omega(g(n))$.

algebraic convergence (j. p. boyd)

Definition

The Algebraic Index of Convergence α is the largest number for which

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right| n^{\alpha}<\infty
$$

where a_{n} are the coefficients in the sequence. Alternatively, α is the algebraic index if

$$
a_{n} \sim \mathcal{O}\left(1 / n^{\alpha}\right)
$$

exponential convergence (j. p. boyd)

Definition

If the algebraic index α is unbounded (i.e. a_{n} decrease faster than $1 / n^{\alpha}$ for any finite α), then the sequence converges exponentially (a.k.a. spectrally).

Alternatively, the sequence converges exponentially if for constants q and β

$$
a_{n} \sim \mathcal{O}\left(e^{-q n^{\beta}}\right)
$$

where β is the exponential index of convergence and

$$
\beta=\lim _{n \rightarrow \infty} \frac{\log \left|\log \left(\left|a_{n}\right|\right)\right|}{\log (n)}
$$

rates of exponential convergence (j. p. boyd)

Definition
A sequence a_{n} has supergeometric, geometric, or subgeometric if

$$
\lim _{n \rightarrow \infty} \log \left(\left|a_{n}\right|\right) / n= \begin{cases}\infty, & \text { supergeometric } \\ \text { contant, } & \text { geometric } \\ 0, & \text { subgeometric }\end{cases}
$$

or, alternatively,

$$
\begin{aligned}
a_{n} & \sim \mathcal{O}\left(e^{-(n / j) \log (n)}\right): \text { supergeometric } \\
a_{n} & \sim \mathcal{O}\left(e^{-q n}\right): \text { geometric } \\
\beta & <1: \text { subgeometric }
\end{aligned}
$$

asymptotic rate of geometric convergence (j. p. boyd)

definition

If a sequence a_{n} has geometric convergence $(\beta=1)$ so that

$$
a_{n} \sim \mathcal{O}\left(e^{-n \mu}\right)
$$

then the asymptotic rate of geometric convergence is μ. Alternatively,

$$
\mu=\lim _{n \rightarrow \infty}\left\{-\log \left|a_{n}\right| / n\right\}
$$

Figure 2.5: $\log \left|a_{n}\right|$ versus n for four rates of convergence. Circles: algebraic convergence, such as $a_{n} \sim 1 / n^{2}$. Dashed: subgeometric convergence, such as $a_{n} \sim \exp \left(-1.5 n^{2 / 3}\right)$. Solid: geometric convergence, such as $\exp (-\mu n)$ for any positive μ. Pluses: supergeometric, such as $a_{n} \sim \exp (-n \log (n))$ or faster decay.

Figure 2.6: Same as previous figure except that the graph is log-log: the degree of the spectral coefficient n is now plotted on a logarithmic scale, too.

Figure 2.8: Spectral coefficients for three geometrically converging series. Although the three sets of coefficients differ through algebraic coefficients - the top curve is larger by n^{2} than the middle curve, which in turn is larger by a factor of $n \log (n)$ than the bottom curve - the exponential dependence on n is the same for all. Consequently, all three sets of coefficients asymptote to parallel lines on this log-linear plot.

randomness

- Randomness \approx unpredictability
- One view: a sequence is random if it has no shorter description
- Physical processes, such as flipping a coin or tossing dice, are deterministic with enough information about the governing equations and initial conditions.
- But even for deterministic systems, sensitivity to the initial conditions can render the behavior practically unpredictable.
- we need random simulation methods
http://www.xkcd.com/221/

int getRandomNumber()

\{
return 4; // chosen by fair dice roll. // guaranteed to be random.
\}

randomness is easy, right?

- In May, 2008, Debian announced a vulnerability with OpenSSL: the OpenSSL pseudo-random number generator
- the seeding process was compromised (2 years)
- only 32,767 possible keys
- seeding based on process ID (this is not entropy!)
- all SSL and SSH keys from 9/2006-5/2008 regenerated
- all certificates recertified
- Cryptographically secure pseudorandom number generator (CSPRNG) are necessary for some apps
- Other apps rely less on true randomness

repeatability

- With unpredictability, true randomness is not repeatable
- ...but lack of repeatability makes testing/debugging difficult
- So we want repeatability, but also independence of the trials
$1 \ggg>$ np.random.seed (1234)

pseudorandom numbers

Computer algorithms for random number generations are deterministic

- ...but may have long periodicity (a long time until an apparent pattern emerges)
- These sequences are labeled pseudorandom
- Pseudorandom sequences are predictable and reproducible (this is mostly good)

random number generators

Properties of a good random number generator:
Random pattern: passes statistical tests of randomness
Long period: long time before repeating
Efficiency: executes rapidly and with low storage
Repeatability: same sequence is generated using same initial states
Portability: same sequences are generated on different architectures

random number generators

- Early attempts relied on complexity to ensure randomness
- "midsquare" method: square each member of a sequence and take the middle portion of the results as the next member of the sequence
- ...simple methods with a statistical basis are preferable

linear congruential generators

- Congruential random number generators are of the form:

$$
x_{k}=\left(a x_{k-1}+c\right)(\bmod M)
$$

where a and c are integers given as input.

- x_{0} is called the seed
- Integer M is the largest integer representable (e.g. $2^{31}-1$)
- Quality depends on a and c. The period will be at most M.

Example

Let $a=13, c=0, m=31$, and $x_{0}=1$.

$$
1,13,14,27,10,6, \ldots
$$

This is a permutation of integers from $1, \ldots, 30$, so the period is $m-1$.

- IBM used Scientific Subroutine Package (SSP) in the 1960's the mainframes.
- Their random generator, rnd used $a=65539, c=0$, and $m=2^{31}$.
- arithmetic $\bmod 2^{31}$ is done quickly with 32 bit words.
- multiplication can be done quickly with $a=2^{16}+3$ with a shift and short add.
- Notice $(\bmod m)$:

$$
x_{k+2}=6 x_{k+1}-9 x_{k}
$$

...strong correlation among three successive integers

history

- Matlab used $a=7^{5}, c=0$, and $m=2^{31}-1$ for a while
- period is $m-1$.
- this is no longer sufficient

what's used?

Two popular methods:

1. Method of Marsaglia (period $\approx 2^{1430}$).
${ }_{1}$ Initialize x_{0}, \ldots, x_{3} and c to random values given a seed 2
${ }_{3}$ Let $s=2111111111 x_{n-4}+1492 x_{n-3} 1776 x_{n-2}+5115 x_{n-1}+c$
4
${ }_{5}$ Compute $X_{n}=s \bmod 2^{32}$
6
> $c=$ floor $\left(s / 2^{32}\right)$
2. $\operatorname{rand}()$ in Unix uses $a=1103515245, c=12345, m=2^{31}$.

Even the Marsaglia method produces points in $n-D$ on only a small number of hyperplanes.

linear congruential generators

- sensitive to a and c
- be careful with supplied random functions on your system
- period is M
- standard division is necessary if generating floating points in $[0,1)$.

fibonacci

- produce floating-point random numbers directly using differences, sums, or products.
- Typical subtractive generator:

$$
x_{k}=x_{k-17}-x_{5}
$$

with "lags" of 17 and 5 .

- Lags much be chosen very carefully
- negative results need fixing
- more storage needed than congruential generators
- no division needed
- very very good statistical properties
- long periods since repetition does not imply a period

sampling over intervals

If we need a uniform distribution over $[a, b)$, then we modify x_{k} on $[0,1)$ by

$$
(b-a) x_{k}+a
$$

non-uniform distributions

- sampling nonuniform distributions is much more difficult
- if the cumulative distribution function is invertible, then we can generate the non-uniform sample from the uniform:

$$
f(t)=\lambda e^{-\lambda t}, \quad t>0
$$

thus

$$
y_{k}=-\log \left(1-x_{k}\right) / \lambda
$$

where x_{k} is uniform in $[0,1)$.

- ...not so easy in general

quasi-random sequences

- For some applications, reasonable uniform coverage of the sample is more important than the "randomness"
- True random samples often exhibit clumping
- Perfectly uniform samples uses a uniform grid, but does not scale well at high dimensions
- quasi-random sequences attempt randomness while maintaining coverage

quasi-random sequences

- quasi random sequences are not random, but give random appearance
- by design, the points avoid each other, resulting in no clumping

