4

Randomness and Simulation

L. Olson

September 8, 2015

Department of Computer Science University of Illinois at Urbana-Champaign

- randomness
- reproducibility
- designing an experiment

the scientific method

The Scientific Method as an Ongoing Process

errors

- How do I classify my method?
- Goal: determine how the error $|f(x) p_n(x)|$ behaves relative to n (and f).
- Goal: determine how the cost of computing $p_n(x)$ behave relative to n (and f).
- for $f(x) = \frac{1}{1-x}$ we have

$$p_n = \sum_{k=0}^n x^k = 1 + x + x^2 + \dots$$

SO

$$e_n = |f(x) - p_n(x)|$$

- Is $e_n \sim 1/n^r$?
- Is $e_n \sim 1/\sqrt{n}$?
- Is $e_n \sim 1/n!$?

timing

- mymethod() takes x seconds
- How long does it take in general?
- If the data input is of size *n*, how long should it take?
 - n^2 ?
 - n!?
 - 10ⁿ?

big-o

How to measure the impact of n on algorithmic cost?

 $\mathcal{O}(\cdot)$

Let g(n) be a function of n. Then define

$$\mathcal{O}(g(n)) = \{ f(n) \mid \exists c, n_0 > 0 : 0 \le f(n) \le cg(n), \forall n \ge n_0 \}$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \le f(n) \le cg(n)$ is satisfied.

- ullet assume non-negative functions (otherwise add $|\cdot|$) to the definitions
- $f(n) \in \mathcal{O}(g(n))$ represents an asymptotic upper bound on f(n) up to a constant
- example: $f(n) = 3\sqrt{n} + 2\log n + 8n + 85n^2 \in \mathcal{O}(n^2)$

big-o (omicron)

 $\mathcal{O}(\cdot)$

Let g(n) be a function of n. Then define

$$\mathcal{O}(g(n)) = \{f(n) \, | \, \exists c, n_0 > 0 \, : \, 0 \leq f(n) \leq cg(n), \, \forall n \geq n_0 \}$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \le f(n) \le cg(n)$ is satisfied.

big-omega

 $\Omega(\cdot)$

Let g(n) be a function of n. Then define

$$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0 > 0 : 0 \le cg(n) \le f(n), \forall n \ge n_0 \}$$

That is, $f(n) \in \Omega(g(n))$ if there is a constant c such that $0 \le cg(n) \le f(n)$ is satisfied.

big-theta

 $\Theta(\cdot)$

Let g(n) be a function of n. Then define

$$\Theta(g(n)) = \{f(n) \, | \, \exists c_1, c_2, n_0 > 0 \, : \, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \, \forall n \geq n_0 \}$$

Equivalently, $\Theta(g(n)) = \mathcal{O}(g(n)) \cap \Omega(g(n))$.

q

algebraic convergence (j. p. boyd)

Definition

The Algebraic Index of Convergence α is the largest number for which

$$\lim_{n\to\infty}|a_n|n^\alpha<\infty$$

where a_n are the coefficients in the sequence. Alternatively, α is the algebraic index if

$$a_n \sim \mathcal{O}(1/n^{lpha})$$

exponential convergence (j. p. boyd)

Definition

If the algebraic index α is unbounded (i.e. a_n decrease faster than $1/n^{\alpha}$ for any finite α), then the sequence converges exponentially (a.k.a. spectrally).

Alternatively, the sequence converges exponentially if for constants q and β

$$a_n \sim \mathcal{O}(e^{-qn^{\beta}})$$

where β is the exponential index of convergence and

$$\beta = \lim_{n \to \infty} \frac{\log |\log(|a_n|)|}{\log(n)}$$

rates of exponential convergence (j. p. boyd)

Definition

A sequence a_n has supergeometric, geometric, or subgeometric if

$$\lim_{n \to \infty} \log(|a_n|)/n = egin{cases} \infty, & \text{supergeometric} \\ contant, & \text{geometric} \\ 0, & \text{subgeometric} \end{cases}$$

or, alternatively,

$$a_n \sim \mathcal{O}(e^{-(n/j)\log(n)})$$
: supergeometric $a_n \sim \mathcal{O}(e^{-qn})$: geometric $\beta < 1$: subgeometric

asymptotic rate of geometric convergence (j. p. boyd)

definition

If a sequence a_n has geometric convergence $(\beta=1)$ so that

$$a_n \sim \mathcal{O}(e^{-n\mu})$$

then the asymptotic rate of geometric convergence is μ . Alternatively,

$$\mu = \lim_{n \to \infty} \{ -\log |a_n|/n \}$$

Figure 2.5: $\log \mid a_n \mid$ versus n for four rates of convergence. Circles: algebraic convergence, such as $a_n \sim 1/n^2$. Dashed: subgeometric convergence, such as $a_n \sim \exp(-1.5 \ n^{2/3})$. Solid: geometric convergence, such as $\exp(-\mu \ n)$ for any positive μ . Pluses: supergeometric, such as $a_n \sim \exp(-n \ \log(n))$ or faster decay.

Figure 2.6: Same as previous figure except that the graph is log-log: the degree of the spectral coefficient n is now plotted on a logarithmic scale, too.

Figure 2.8: Spectral coefficients for three geometrically converging series. Although the three sets of coefficients differ through algebraic coefficients — the top curve is larger by n^2 than the middle curve, which in turn is larger by a factor of $n\log(n)$ than the bottom curve — the *exponential* dependence on n is the same for all. Consequently, all three sets of coefficients asymptote to parallel lines on this log-linear plot.

randomness

- ullet Randomness pprox unpredictability
- One view: a sequence is random if it has no shorter description
- Physical processes, such as flipping a coin or tossing dice, are deterministic with enough information about the governing equations and initial conditions.
- But even for deterministic systems, sensitivity to the initial conditions can render the behavior practically unpredictable.
- we need random simulation methods

http://www.xkcd.com/221/

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

randomness is easy, right?

- In May, 2008, Debian announced a vulnerability with OpenSSL: the OpenSSL pseudo-random number generator
 - the seeding process was compromised (2 years)
 - only 32,767 possible keys
 - seeding based on process ID (this is not entropy!)
 - all SSL and SSH keys from 9/2006 5/2008 regenerated
 - · all certificates recertified
- Cryptographically secure pseudorandom number generator (CSPRNG) are necessary for some apps
- Other apps rely less on true randomness

repeatability

- With unpredictability, true randomness is not repeatable
- ...but lack of repeatability makes testing/debugging difficult
- So we want repeatability, but also independence of the trials

```
_1 >>>> np.random.seed(1234)
```

pseudorandom numbers

Computer algorithms for random number generations are deterministic

- ...but may have long periodicity (a long time until an apparent pattern emerges)
- These sequences are labeled pseudorandom
- Pseudorandom sequences are predictable and reproducible (this is mostly good)

random number generators

Properties of a good random number generator:

Random pattern: passes statistical tests of randomness

Long period: long time before repeating

Efficiency: executes rapidly and with low storage

Repeatability: same sequence is generated using same initial states

Portability: same sequences are generated on different architectures

random number generators

- Early attempts relied on complexity to ensure randomness
- "midsquare" method: square each member of a sequence and take the middle portion of the results as the next member of the sequence
- ...simple methods with a statistical basis are preferable

linear congruential generators

• Congruential random number generators are of the form:

$$x_k = (ax_{k-1} + c) \pmod{M}$$

where a and c are integers given as input.

- x_0 is called the *seed*
- Integer M is the largest integer representable (e.g. $2^{31}-1$)
- Quality depends on a and c. The period will be at most M.

Example

Let
$$a = 13$$
, $c = 0$, $m = 31$, and $x_0 = 1$.

This is a permutation of integers from $1, \ldots, 30$, so the period is m-1.

history

- IBM used Scientific Subroutine Package (SSP) in the 1960's the mainframes.
- Their random generator, rnd used a = 65539, c = 0, and $m = 2^{31}$.
- arithmetic mod 2³¹ is done quickly with 32 bit words.
- multiplication can be done quickly with $a = 2^{16} + 3$ with a shift and short add.
- Notice (mod m):

$$x_{k+2} = 6x_{k+1} - 9x_k$$

...strong correlation among three successive integers

history

- Matlab used $a = 7^5$, c = 0, and $m = 2^{31} 1$ for a while
- period is m-1.
- this is no longer sufficient

what's used?

Two popular methods:

1. Method of Marsaglia (period $\approx 2^{1430}$).

```
Initialize x_0, \dots, x_3 and c to random values given a seed

Let s=21111111111x_{n-4}+1492x_{n-3}1776x_{n-2}+5115x_{n-1}+c

Compute x_n=s \mod 2^{32}

c=floor(s/2^{32})
```

2. rand() in Unix uses a = 1103515245, c = 12345, $m = 2^{31}$.

Even the Marsaglia method produces points in n-D on only a small number of hyperplanes.

linear congruential generators

- sensitive to a and c
- be careful with supplied random functions on your system
- period is M
- ullet standard division is necessary if generating floating points in [0,1).

fibonacci

- produce floating-point random numbers directly using differences, sums, or products.
- Typical subtractive generator:

$$x_k = x_{k-17} - x_5$$

with "lags" of 17 and 5.

- Lags much be chosen very carefully
- negative results need fixing
- more storage needed than congruential generators
- no division needed
- very very good statistical properties
- long periods since repetition does not imply a period

sampling over intervals

If we need a uniform distribution over [a,b), then we modify x_k on [0,1) by

$$(b - a)x_k + a$$

non-uniform distributions

- sampling nonuniform distributions is much more difficult
- if the cumulative distribution function is invertible, then we can generate the non-uniform sample from the uniform:

$$f(t) = \lambda e^{-\lambda t}, \quad t > 0$$

thus

$$y_k = -\log(1-x_k)/\lambda$$

where x_k is uniform in [0,1).

• ...not so easy in general

quasi-random sequences

- For some applications, reasonable uniform coverage of the sample is more important than the "randomness"
- True random samples often exhibit clumping
- Perfectly uniform samples uses a uniform grid, but does not scale well at high dimensions
- quasi-random sequences attempt randomness while maintaining coverage

quasi-random sequences

- quasi random sequences are not random, but give random appearance
- by design, the points avoid each other, resulting in no clumping