\#5

Linear Algebra Meets Computation (cont.)

Erin Carrier

September 24, 2015
Department of Computer Science
University of Illinois at Urbana-Champaign

goals for today

- Last time we learned about representing data; now how can we manipulate it?
- Thinking about a matrix as an operator on data
- Using an operator to rotate, scale, etc. geometric data
- Applying these operators to actual problems

recall matrix-vector multiplication

Consider computing $A x=y$.

- Recall summation notation

$$
y_{i}=\sum_{j} A_{i j} x_{j}
$$

- Not very intuitive
- Two ways to think about mat-vecs:
- Linear combination of column vectors
- Dot product of x with rows of A

recall matrix-matrix multiplication

Consider computing $A B=C$.

- Recall summation notation

$$
C_{i j}=\sum_{k} A_{i k} B_{k j}
$$

- Actually just applying mat-vec to lots of column vectors

matrices as operators

- Matrices operate on data
- For $y=A x, x$ is transformed into y
- Data can be list of values (stored in a vector) or geometric vectors

matrices operating on data

- Recall representing data as vectors, e.g. sound
- How could we represent an averaging operation?
- Recall representing data as matrices (2d vectors), e.g. image
- Image blurring demo

matrices operating on vectors

What can matrices do?

- Scale
- Rotate
- Can they translate? - Think on this

scaling operator

- Stretching an image or a vector
- Can stretch by different amounts in different dimensions
- Example:

$$
\left[\begin{array}{cccc}
c_{1} & 0 & \cdots & 0 \\
0 & c_{2} & \cdots & 0 \\
\vdots & & & \\
0 & \cdots & 0 & c_{m}
\end{array}\right]
$$

- Scaling by negative number reflects over axis

rotating operator

- Think about rotating $[1,0]^{T}$ and $[0,1]^{T}$ clockwise by θ
- What do these vectors turn into?
- Example:

$$
\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

- What changes to rotate counter-clockwise?
- Matrices for geometry transformation demo

can matrices translate?

- Consider a 2×2 matrix A
- Suppose we have 4 points representing the corners of the unit square:

- Is it possible to mulitply each point by A (i.e. $A x$ for each point x) to move (translate) this square?

special matrices

- Identity matrix: operator that does nothing

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & & \\
0 & \cdots & 0 & 1
\end{array}\right]
$$

- Permutation matrix
- Permutation of the identity matrix
- Permutes (swaps) rows
- Example:

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
c \\
a \\
b
\end{array}\right]
$$

matrices are linear operators

What do we mean by linear?

$$
\begin{gathered}
A(x+y)=A x+A y \\
A(\alpha x)=\alpha A x
\end{gathered}
$$

matrices as sets of vectors

We have been thinking about matrices as operating on vectors. It can also be useful to think of matrix as a set of column vectors.

But first, let's revisit some topics from last time:

- Recall linear independence/dependence: A set of vectors $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent if

$$
\sum_{i=1}^{m} \alpha_{i} v_{i}=0 \Longleftrightarrow \alpha_{i}=0 \forall i
$$

Otherwise set is linearly dependent.

- Recall basis: A set of linearly independent vectors such that any other vectors in the same space can be represented as a linear combination of the basis vectors.
- Span: Set of vectors that can be written as a linear combination of basis vectors

matrices as sets of vectors (cont).

So, what does this have to do with matrices?

Consider a matrix A, composed of column vectors, $a_{1}, a_{2}, \ldots, a_{m}$

- Rank(A): the number of linearly independent columns
- Column rank = row rank
- Nullspace(A): the set of all vectors that A annihilates - any x such that $A x=0$
- Zero vector always in the nullspace of a matrix
- What does it mean for nullspace to be nontrivial?
- Connection to rank?
- Range(A): the span of the columns of A - all vectors y such that $A x=y$ for some x (think about mat-vec as linear combination of columns)

linear systems

- Matvec is computing $y=A x$.
- What if we know y, but not x ?
- In terms of matrices as sets of vectors, think of this as finding the coefficients to the vectors so linear combination produces right hand side.
- In terms of matrices as linear operators, think of this as finding data that when operated on by equations gives right hand side.

linear systems (cont)

Example: Consider linear system:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=5 \\
4 x_{1}+x_{2}+x_{3}=9 \\
x_{1}-x_{2}+3 x_{3}=8
\end{array}
$$

This can be represented as

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & 1 & 1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
9 \\
8
\end{array}\right]
$$

The solution, x to $A x=y$ is

$$
x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

What does this represent in both views from last slide?

