newton’s method and optimization

Luke Olson

Department of Computer Science
University of Illinois at Urbana-Champaign
Tu Nov 10 Least-squares and error
Th Nov 12 Case Study: Cancer Analysis
Tu Nov 17 Building a basis for approximation (interpolation)
Th Nov 19 non-linear Least-squares 1D: Newton
Tu Dec 01 non-linear Least-squares ND: Newton
Th Dec 03 Steepest Decent
Tu Dec 08 Elements of Simulation + Review

Friday December 11 – Tuesday December 15 Final Exam
(computerized facility)
• Write a nonlinear least-squares problem with many parameters
• Introduce Newton’s method for n-dimensional optimization
• Build some intuition about minima
fitting a circle to data

Consider the following data points \((x_i, y_i)\):

It appears they can be approximated by a circle. How do we find which one approximates it best?
fitting a circle to data

What information is required to uniquely determine a circle? 3 numbers are needed:

- x_0, the x-coordinate of the center
- y_0, the y-coordinate of the center
- r, the radius of the circle.

Equation: $(x - x_0)^2 + (y - y_0)^2 = r^2$

Unlike the sine function we saw before the break, we need to determine 3 parameters, not just one. We must minimize the residual:

$$R(x_0, y_0, r) = \sum_{i=1}^{n} \left((x_i - x_0)^2 + (y_i - y_0)^2 - r^2 \right)^2$$

Do you remember how to minimize a function of several variables?
A necessary (but not sufficient) condition for a point \((x^*, y^*, z^*)\) to be a minimum of a function \(F(x, y, z)\) is that the gradient of \(F\) be equal to zero at that point.

\[
\nabla F = \left[\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right]^T
\]

\(\nabla F\) is a vector, and all components must equal zero for a minimum to occur (this does not guarantee a minimum however!).

Note the similarity between this and a function of 1 variable, where the first derivate must be zero at a minimum.
Remember our formula for the residual:

\[
R(x_0, y_0, r) = \sum_{i=1}^{n} \left((x_i - x_0)^2 + (y_i - y_0)^2 - r^2 \right)^2
\]

Important: The variables for this function are \(x_0, y_0, \) and \(r \) because we don’t know them. The data \((x_i, y_i)\) is fixed (known).

The gradient is then:

\[
\begin{bmatrix}
\frac{\partial R}{\partial x_0} & \frac{\partial R}{\partial y_0} & \frac{\partial R}{\partial r}
\end{bmatrix}^T
\]
Here is the gradient of the residual in all its glory:

\[
\begin{bmatrix}
-4 \sum_{i=1}^{n} \left[(x_i - x_0)^2 + (y_i - y_0)^2 - r^2 \right] (x_i - x_0) \\
-4 \sum_{i=1}^{n} \left[(x_i - x_0)^2 + (y_i - y_0)^2 - r^2 \right] (y_i - y_0) \\
-4 \sum_{i=1}^{n} \left[(x_i - x_0)^2 + (y_i - y_0)^2 - r^2 \right] r
\end{bmatrix}
\]

Each component of this vector must be equal to zero at a minimum. We can generalize Newton’s method to higher dimensions in order to solve this iteratively.

We’ll go over the details of the method in a bit, but let’s see the highlights for solving this problem.
Just like 1-D Newton’s method, we’ll need an initial guess. Let’s use the average x and y coordinates of all data points in order to guess where the center is. Let’s choose the radius to coincide with the point farthest from this center:

Not horrible...
After a handful of iterations of Newton’s Method, we obtain the following approximate best fit:
Recall that when applying Newton’s method to 1-dimensional root-finding, we began with a linear approximation

\[f(x_k + \Delta x) \approx f(x_k) + f'(x_k) \Delta x \]

Here we define \(\Delta x := x_{k+1} - x_k \). In root-finding, our goal is to find \(\Delta x \) such that \(f(x_k + \Delta x) = 0 \). Therefore the new iterate \(x_{k+1} \) at the \(k \)-th iteration of Newton’s method is

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]
Now consider Newton’s method for 1-dimension optimization.

- For root-finding, we sought the zeros of $f(x)$.
- For optimization, we seek the zeros of $f'(x)$.

The roots of f' are the critical points of f.

![Graph showing the relationship between $f(x)$ and $f'(x)$]

The roots of f' are the critical points of f.

![Graph showing the relationship between $f(x)$ and $f'(x)$]
newton optimization in 1-dimension

We will need more terms in our approximation, so let us form an approximation of second order

\[f(x_k + \Delta x) \approx f(x_k) + f'(x_k)\Delta x + f''(x_k)(\Delta x)^2 \]

Next, take the partial derivatives of each side with respect to \(\Delta x \), giving

\[f'(x_k + \Delta x) \approx f'(x_k) + f''(x_k)\Delta x \]

Our goal is \(f'(x_k + \Delta x) = 0 \), therefore the \(k \)-th iterate should be

\[x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} \]
recall application to nonlinear least squares

From last class we had a non-linear least squares problem. We applied Newton’s method to solve it.

\[r(k) = \sum_{i=1}^{m} (y_i - \sin(kt_i))^2 \]

\[r'(k) = -2 \sum_{i=1}^{m} t_i \cos(kt_i)(y_i - \sin(kt_i)) \]

\[r''(k) = 2 \sum_{i=1}^{m} t_i^2 \left[(y - \sin(kt_i)) \sin(kt_i) + \cos^2(kt_i) \right] \]

Iteration:

\[k_{new} = k - \frac{r'(k)}{r''(k)} \]
newton optimization in \(n \)-dimensions

- How can we generalize to an \(n \)-dimensional process?
- Need \(n \)-dimensional concept of a derivative, specifically
 - The Jacobian, \(\nabla f(x) \)
 - The Hessian, \(Hf(x) := \nabla \nabla f(x) \)

Then our second order approximation of a function can be written as

\[
f(x_k + \Delta x) \approx f(x_k) + \nabla f(x_k) \Delta x + Hf(x_k)(\Delta x)^2
\]

Again, taking the partials with respect to \(\Delta x \) and setting the LHS to zero gives

\[
x_{k+1} = x_k - Hf^{-1}(x_k) \nabla f(x_k)
\]
The Jacobian of a function, $\nabla f(x)$, contains all the first order derivative information about $f(x)$.

For a single function $f(x) = f(x_1, x_2, \ldots, x_n)$, the Jacobian is simply the gradient

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)$$

For example:

$$f(x, y, z) = x^2 + 3xy + yz^3$$

$$\nabla f(x, y, z) = (2x + 3y, 3x + z^3, 3yz^2)$$
Just as the Jacobian provides first-order derivative information, the Hessian provides all the second-order information.

The Hessian of a function can be written out fully as

\[Hf(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix} \]

In a concise notation using element-wise notation

\[Hf_{i,j}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} \]
An example is a little more illuminating. Let us continue our example from before.

\[
f(x, y, z) = x^2 + 3xy + yz^3
\]

\[
\nabla f(x, y, z) = (2x + 3y, 3x + z^3, 3yz^2)
\]

\[
Hf(x, y, z) = \begin{bmatrix} 2 & 3 & 0 \\ 3 & 0 & 3z^2 \\ 0 & 3z^2 & 6yz \end{bmatrix}
\]
notes on newton’s method for optimization

- The roots of ∇f correspond to the critical points of f
- But in optimization, we will be looking for a specific type of critical point (e.g. \textit{minima} and \textit{maxima})
- $\nabla f = 0$ is only a necessary condition for optimization. We must check the second derivative to confirm the type of critical point.
- x^* is a minima of f if $\nabla f(x^*) = 0$ \textbf{and} $Hf(x^*) > 0$ (i.e. positive definite).
- Similarly, for x^* to be a maxima, then we need $Hf(x^*) < 0$ (i.e. negative definite).
• Newton’s method is dependent on the initial condition used.
• Newton’s method for optimization in n-dimensions requires the inversion of the Hessian and therefore can be computationally expensive for large n.