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objectives

• Set up an array of data and measure its “size”

• Construct a “norm” and apply its properties to a problem

• Describe a “matrix norm” or “operator norm”

• Find examples where a matrix norm is appropriate and not
appropriate
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vector addition and subtraction

Addition and subtraction are element-by-element operations

c = a + b ⇐⇒ ci = ai + bi i = 1, . . . ,n

d = a − b ⇐⇒ di = ai − bi i = 1, . . . ,n

a =

1
2
3

 b =

3
2
1



a + b =

4
4
4

 a − b =

−2
0
2


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multiplication by a scalar

Multiplication by a scalar involves multiplying each element in the
vector by the scalar:

b = σa ⇐⇒ bi = σai i = 1, . . . ,n

a =

4
6
8

 b =
a
2
=

2
3
4


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vector transpose

The transpose of a row vector is a column vector:

u =
[
1,2,3

]
then uT =

1
2
3


Likewise if v is the column vector

v =

4
5
6

 then vT =
[
4,5,6

]

5



linear combinations

Combine scalar multiplication with addition

α


u1

u2
...

um

+ β


v1

v2
...

vm

 =


αu1 + βv1

αu2 + βv2
...

αum + βvm

 =


w1

w2
...

wm



r =

−2
1
3

 s =

1
0
3



t = 2r + 3s =

−4
2
6

+

3
0
9

 =

−1
2

15


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linear combinations

Any one vector can be created from an infinite combination of other
“suitable” vectors.

w =

[
4
2

]
= 4

[
1
0

]
+ 2

[
0
1

]

w = 6

[
1
0

]
− 2

[
1

−1

]

w =

[
2
4

]
− 2

[
−1

1

]

w = 2

[
4
2

]
− 4

[
1
0

]
− 2

[
0
1

]
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linear combinations

Graphical
interpretation:

• Vector tails can be
moved to
convenient
locations

• Magnitude and
direction of vectors
is preserved

[1,0]

[0,1]

[2,4]

[1,-1]

[4,2]
[-1,1]

[1,1]

0 1 2 3 4 5 6

0

1

2

3

4
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vector inner product

In physics, analytical geometry, and engineering, the dot product
has a geometric interpretation

σ = x · y ⇐⇒ σ =

n∑
i=1

xiyi

x · y = ‖x‖2 ‖y‖2 cos θ
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vector inner product

The inner product of x and y requires that x be a row vector y be a
column vector

[
x1 x2 x3 x4

]
y1

y2

y3

y4

 = x1y1 + x2y2 + x3y3 + x4y4
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vector inner product

For two n-element column vectors, u and v, the inner product is

σ = uT v ⇐⇒ σ =

n∑
i=1

uivi

The inner product is commutative so that
(for two column vectors)

uT v = vT u
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vector outer product

The inner product results in a
scalar.
The outer product creates a
rank-one matrix:

A = uvT ⇐⇒ ai,j = uivj

Example
Outer product of two 4-element
column vectors

uvT =


u1

u2

u3

u4

[v1 v2 v3 v4

]

=


u1v1 u1v2 u1v3 u1v4

u2v1 u2v2 u2v3 u2v4

u3v1 u3v2 u3v3 u3v4

u4v1 u4v2 u4v3 u4v4

 12



vector norms

Compare magnitude of scalars with the absolute value∣∣α∣∣ > ∣∣β∣∣
Compare magnitude of vectors with norms

‖x‖ > ‖y‖

There are several ways to compute ||x ||. In other words the size of two
vectors can be compared with different norms.
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vector norms

Consider two element vectors, which lie in a plane

a = (4,2)

b = (2,4)

a = (4,2)c = (2,1)

Use geometric lengths to represent the magnitudes of the vectors

`a =
√

42 + 22 =
√

20, `b =
√

22 + 42 =
√

20, `c =
√

22 + 12 =
√

5

We conclude that
`a = `b and `a > `c

or
‖a‖ = ‖b‖ and ‖a‖ > ‖c‖
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the l2 norm

The notion of a geometric length for 2D or 3D vectors can be
extended vectors with arbitrary numbers of elements.

The result is called the Euclidian or L2 norm:

‖x‖2 =
(
x2

1 + x2
2 + . . .+ x2

n
)1/2

=

(
n∑

i=1

x2
i

)1/2

The L2 norm can also be expressed in terms of the inner product

‖x‖2 =
√

x · x =
√

xT x
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p-norms

For any positive integer p

‖x‖p =
(
|x1|

p + |x2|
p + . . .+ |xn |

p)1/p

The L1 norm is sum of absolute values

‖x‖1 = |x1|+ |x2|+ . . .+ |xn | =

n∑
i=1

|xi |

The L∞ norm or max norm is

‖x‖∞ = max (|x1|, |x2|, . . . , |xn |) = max
i

(|xi |)

Although p can be any positive number, p = 1,2,∞ are most
commonly used.
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defining a p-norm

These must hold for any x and y

1. ‖x‖ > 0 if x , 0

2. ‖αx‖ = |α| · ‖x‖ for an scalar α

3. ‖x + y‖ 6 ‖x‖+ ‖y‖ (this is called the triangle inequality)
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defining a p-norm for a matrix

If A is a matrix, then we use the vector p-norm to define a similar
matrix norm:

‖A‖p = max
x,0

‖Ax‖p

‖x‖p
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application of norms

Are two vectors (nearly) equal?

Floating point comparison of two scalars with absolute value:∣∣α− β
∣∣∣∣α∣∣ < δ

where δ is a small tolerance.

Comparison of two vectors with norms:

‖y − z‖
‖z‖

< δ
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application of norms

Notice that
‖y − z‖
‖z‖

< δ

is not equivalent to
‖y‖− ‖z‖
‖z‖

< δ.

This comparison is important in convergence tests for sequences of
vectors.
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application of norms

Creating a Unit Vector

Given u = [u1,u2, . . . ,um]
T , the unit vector in the direction of u is

û =
u
‖u‖2

Proof:

‖û‖2 =

∥∥∥∥ u
‖u‖2

∥∥∥∥
2
=

1
‖u‖2

‖u‖2 = 1

The following are not unit vectors

u
‖u‖1

u
‖u‖∞
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orthogonal vectors

From geometric interpretation of the inner product

u · v = ‖u‖2 ‖v‖2 cos θ

cos θ =
u · v

‖u‖2 ‖v‖2
=

uT v
‖u‖2 ‖v‖2

Two vectors are orthogonal when θ = π/2 or u · v = 0.

In other words
uT v = 0

if and only if u and v are orthogonal.
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orthonormal vectors

Orthonormal vectors are unit vectors that are orthogonal.

A unit vector has an L2 norm of one.

The unit vector in the direction of u is

û =
u
‖u‖2

Since
‖u‖2 =

√
u · u

it follows that u · u = 1 if u is a unit vector.
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notation

The matrix A with m rows and n columns looks like:

A =


a11 a12 · · · a1n

a21 a22 a2n
...

...

am1 · · · amn



aij = element in row i, and column j
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matrices consist of row and column vectors

As a collection of column vec-
tors

A =

a(1)

∣∣∣∣∣∣∣∣∣∣∣
a(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
a(n)



As a collection of row vectors

A =



a ′
(1)

a ′
(2)

...

a ′
(m)


A prime is used to designate a
row vector on this and the fol-
lowing pages.
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preview of the row and column view

Matrix and
vector operations

l
Row and column

operations

l
Element-by-element

operations

26



matrix operations

Addition and subtraction

C = A + B

or
ci,j = ai,j + bi,j i = 1, . . . ,m; j = 1, . . . ,n

Multiplication by a Scalar

B = σA

or
bi,j = σai,j i = 1, . . . ,m; j = 1, . . . ,n

Note
Commas in subscripts are necessary when the subscripts are as-
signed numerical values. For example, a2,3 is the row 2, column 3
element of matrix A , whereas a23 is the 23rd element of vector a.
When variables appear in indices, such as aij or ai,j , the comma is
optional
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matrix transpose

B = AT

or
bi,j = aj,i i = 1, . . . ,m; j = 1, . . . ,n
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matrix–vector product

• The Column View
• gives mathematical insight

• The Row View
• easy to do by hand

• The Vector View
• A square matrix rotates and stretches a vector
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column view of matrix–vector product

Consider a linear combination of a set of column vectors
{a(1),a(2), . . . ,a(n)}. Each a(j) has m elements

Let xi be a set (a vector) of scalar multipliers

x1a(1) + x2a(2) + . . .+ xna(n) = b

or
n∑

j=1

a(j)xj = b

Expand the (hidden) row index

x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn

 =


b1

b2
...

bm


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column view of matrix–vector product

Form a matrix with the a(j) as columnsa(1)

∣∣∣∣∣∣∣∣∣∣∣
a(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
a(n)




x1

x2
...

xn

 =

b


Or, writing out the elements

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn




x1

x2
...

xn

 =



b1

b2

...

bm


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column view of matrix–vector product

Thus, the matrix-vector product is

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn




x1

x2
...

xn

 =



b1

b2

...

bm


Save space with matrix notation

Ax = b
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column view of matrix–vector product

The matrix–vector product b = Ax
produces a vector b from a linear
combination of the columns in A .

b = Ax ⇐⇒ bi =

n∑
j=1

aijxj

where x and b are column vectors
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column view of matrix–vector product

Listing 1: Matrix–Vector Multiplication by Columns

1 initialize: b = zeros(m,1)
2 for j = 1, . . . ,n
3 for i = 1, . . . ,m
4 b(i) = A(i, j)x(j) + b(i)
5 end

6 end
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compatibility requirement

Inner dimensions must agree

A x = b

[m × n] [n × 1] = [m × 1]
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row view of matrix–vector product

Consider the following matrix–vector product written out as a linear
combination of matrix columns 5 0 0 −1

−3 4 −7 1
1 2 3 6




4
2

−3
−1



= 4

 5
−3

1

+ 2

 0
4
2

− 3

 0
−7

3

− 1

−1
1
6



This is the column view.
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row view of matrix–vector product

Now, group the multiplication and addition operations by row:

4

 5
−3

1

+ 2

 0
4
2

− 3

 0
−7

3

− 1

−1
1
6



=

 (5)(4) + (0)(2) + (0)(−3) + (−1)(−1)
(−3)(4) + (4)(2) + (−7)(−3) + (1)(−1)
(1)(4) + (2)(2) + (3)(−3) + (6)(−1)

 =

 21
16
−7



Final result is identical to that obtained with the column view.
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row view of matrix–vector product

Product of a 3× 4 matrix, A , with a 4× 1 vector, x, looks like

a ′
(1)

a ′
(2)

a ′
(3)




x1

x2

x3

x4

 =


a ′
(1) · x

a ′
(2) · x

a ′
(3) · x

 =

b1

b2

b3



where a ′
(1), a ′

(2), and a ′
(3), are the row vectors constituting the A

matrix.

The matrix–vector product b = Ax
produces elements in b by forming
inner products of the rows of A with x.
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row view of matrix–vector product

i

=
i

x yia'(i )

39



vector view of matrix–vector product

If A is square, the product Ax has the effect of stretching and rotating
x.

Pure stretching of the column vector2 0 0
0 2 0
0 0 2


1

2
3

 =

2
4
6


Pure rotation of the column vector0 −1 0

1 0 0
0 0 1


1

0
0

 =

0
1
0


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vector–matrix product

Matrix–vector product

=

n   1m   n m   1

Vector–Matrix product

=

1    m m    n 1    n 41



vector–matrix product

Compatibility Requirement: Inner dimensions must agree

u A = v

[1×m] [m × n] = [1× n]

42



matrix–matrix product

Computations can be organized in six different ways We’ll focus on
just two

• Column View — extension of column view of matrix–vector
product

• Row View — inner product algorithm, extension of column view
of matrix–vector product
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column view of matrix–matrix product

The product AB produces a matrix C. The columns of C are linear
combinations of the columns of A .

AB = C ⇐⇒ c(j) = Ab(j)

c(j) and b(j) are column vectors.

ji

=

A b( j ) c( j )

j

r

The column view of the matrix–matrix product AB = C is helpful
because it shows the relationship between the columns of A and the
columns of C.
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inner product (row) view of matrix–matrix product

The product AB produces a matrix C. The cij element is the inner
product of row i of A and column j of B.

AB = C ⇐⇒ cij = a ′
(i)b(j)

a ′
(i) is a row vector, b(j) is a column vector.

j

i

=
cij

r

j
i

b( j  ) cija'(i  )

The inner product view of the matrix–matrix product is easier to use
for hand calculations.
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matrix–matrix product summary

The Matrix–vector product looks like:
• • •
• • •
• • •
• • •


••
•

 =


•
•
•
•


The vector–Matrix product looks like:

[
• • • •

]
• • •
• • •
• • •
• • •

 =
[
• • •

]
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matrix–matrix product summary

The Matrix–Matrix product looks like:
• • •
• • •
• • •
• • •


• • • •• • • •
• • • •

 =


• • • •
• • • •
• • • •
• • • •


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matrix–matrix product summary

Compatibility Requirement

A B = C

[m × r ] [r × n] = [m × n]

Inner dimensions must agree

Also, in general
AB , BA
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linear independence

Two vectors lying along the same line are not independent

u =

1
1
1

 and v = −2u =

−2
−2
−2


Any two independent vectors, for example,

v =

−2
−2
−2

 and w =

0
0
1


define a plane. Any other vector in this plane of v and w can be
represented by

x = αv + βw

x is linearly dependent on v and w because it can be formed by a
linear combination of v and w.
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linear independence

A set of vectors is linearly independent if it is impossible to use a
linear combination of vectors in the set to create another vector in the
set.

Linear independence is easy to see for vectors that are orthogonal,
for example, 

4
0
0
0

 ,


0

−3
0
0

 ,


0
0
1
0


are linearly independent.
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linear independence

Consider two linearly independent vectors, u and v.

If a third vector, w, cannot be expressed as a linear combination of u
and v, then the set {u, v,w} is linearly independent.

In other words, if {u, v,w} is linearly independent then

αu + βv = δw

can be true only if α = β = δ = 0.

More generally, if the only solution to

α1v(1) + α2v(2) + · · ·+ αnv(n) = 0 (1)

is α1 = α2 = . . . = αn = 0, then the set {v(1), v(2), . . . , v(n)} is linearly
independent. Conversely, if equation (1) is satisfied by at least one
nonzero αi , then the set of vectors is linearly dependent.
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linear independence

Let the set of vectors {v(1), v(2), . . . , v(n)} be organized as the columns
of a matrix. Then the condition of linear independence isv(1)

∣∣∣∣∣∣∣∣∣∣∣
v(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
v(n)



α1

α2
...

αn

 =


0
0
...

0

 (2)

The columns of the m × n matrix, A , are linearly independent if and
only if x = (0,0, . . . ,0)T is the only n element column vector that sat-
isfies Ax = 0.

52



spaces and subspaces

Group vectors according to number of elements they have. Vectors
from these different groups cannot be mixed.

R1 = Space of all vectors with one element.

These vectors define the points along a line.

R2 = Space of all vectors with two elements.

These vectors define the points in a plane.

Rn = Space of all vectors with n elements.

These vectors define the points in an

n-dimensional space (hyperplane).

53



subspaces

The three vectors

u =

 1
2
0

 , v =

−2
1
3

 , w =

 3
1

−3

 ,

lie in the same plane. The vectors
have three elements each, so they
belong to R3, but they span a
subspace of R3.

-4

-2

0

2

4

-4

-2

0

2

4

-5

0

5

x axis

[-2,1,3] T

[1,2,0]T

[3,1,-3] T

y axis
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basis and dimension of a subspace

• A basis for a subspace is a set of linearly independent vectors
that span the subspace.

• Since a basis set must be linearly independent, it also must have
the smallest number of vectors necessary to span the space.
(Each vector makes a unique contribution to spanning some
other direction in the space.)

• The number of vectors in a basis set is equal to the dimension
of the subspace that these vectors span.

• Mutually orthogonal vectors (an orthogonal set) form convenient
basis sets, but basis sets need not be orthogonal.
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subspaces associated with matrices

The matrix–vector product
y = Ax

creates y from a linear combination of the columns of A

The column vectors of A form a basis for the column space or range
of A .
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matrix rank

• The rank of a matrix, A , is the number of linearly independent
columns in A .

• rank(A) is the dimension of the column space of A .

• Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

1
0
0

 v =

0
1
0

 w =

1
1
0


Do these vectors span R3?
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matrix rank

• The rank of a matrix, A , is the number of linearly independent
columns in A .

• rank(A) is the dimension of the column space of A .

• Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

 1
0

0.00001

 v =

0
1
0

 w =

1
1
0



Do these vectors span R3?

57



matrix rank

• The rank of a matrix, A , is the number of linearly independent
columns in A .

• rank(A) is the dimension of the column space of A .

• Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

 1
0
εm

 v =

0
1
0

 w =

1
1
0


Do these vectors span R3?
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