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objectives

Set up an array of data and measure its “size”

Construct a “norm” and apply its properties to a problem

Describe a “matrix norm” or “operator norm”

Find examples where a matrix norm is appropriate and not
appropriate



vector addition and subtraction

Addition and subtraction are element-by-element operations

c=a+b < c¢c=ag-+b i=1,..., n
d=a—-b <«— d=a-b i=1,..., n

w




multiplication by a scalar

Multiplication by a scalar involves multiplying each element in the
vector by the scalar:



vector transpose

The transpose of a row vector is a column vector:
1
u=1[1,28 then u'=|2
3
Likewise if v is the column vector

4
v=|5 then v’ =[4,5,6]



linear combinations

Combine scalar multiplication with addition

U4 Vq ouy + Pvy W4
Us Vo ol + Bvo Wo
—2 1
r= 1 s=|0
3 3
—4 3 —1
t=2r+3s=| 2 |+|0|=| 2
6 9 15



linear combinations

Any one vector can be created from an infinite combination of other
“suitable” vectors.
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vector inner product

In physics, analytical geometry, and engineering, the dot product
has a geometric interpretation

n
oO=Xy <+ o‘:ZX’-yi

i=1

x-y=|x|2]yll2cos 6



vector inner product

The inner product of x and y requires that x be a row vector y be a
column vector

14

2
X1 X2 X3 X4 i = X1Y1 + XoY2 + X3Y3 + Xaya
3

Ya



vector inner product

For two n-element column vectors, u and v, the inner product is

n
o=u"v = o=) uy

i=1

The inner product is commutative so that
(for two column vectors)



vector outer product

The inner product results in a
scalar.

The outer product creates a
rank-one matrix:

A=w' = a;=uy

Example
Outer product of two 4-element
column vectors

U4

uz
uv’ = Vi Vo Vg v4]
us

Ug

-U1 Vi uUiVe UiV UiVa
UoVvy U2Vo UoV3 UoVy4



vector norms

Compare magnitude of scalars with the absolute value

|| > [B]
Compare magnitude of vectors with norms

1]l > iy

There are several ways to compute ||x||. In other words the size of two
vectors can be compared with different norms.



vector norms

Consider two element vectors, which lie in a plane

b=(2,4

a= (42 c=(221) a=(42

L A

Use geometric lengths to represent the magnitudes of the vectors
la= V42+22 =20, o= V22+42=+20, o= V22+12=v

We conclude that

lo=1{p and {5 > {;

or
lall = [lbll and [[af| > [lc]



The notion of a geometric length for 2D or 3D vectors can be
extended vectors with arbitrary numbers of elements.

The result is called the Euclidian or L, norm:

1/2
2
IXlz = (G +x3+...+x2)" (E x)

The L, norm can also be expressed in terms of the inner product

[Ix]2 = vVx-x= VxTx



p-norms

For any positive integer p

1
IX|lo = (1P + IxalP + ... + IxP) /P

The Ly norm is sum of absolute values

n
X[l = 1]+ %ol + .+ [xal = ) Ixil
i=1
The L., norm or max norm is

[1X]lco = max (Ix1], Xal, . .., |Xnl) = max (Ixil)

Although p can be any positive number, p = 1,2, co are most
commonly used.



defining a p-norm

These must hold for any x and y

1. ||x]] >0ifx#0
2. |lox|| = || - || x]| for an scalar o
3. Ix+yll < |Ix]| + |lyll (this is called the triangle inequality)



defining a p-norm for a matrix

If A is a matrix, then we use the vector p-norm to define a similar
matrix norm:

Ax
HA”p — max H ||P
x#0 [|x]|p



application of norms

Are two vectors (nearly) equal?
Floating point comparison of two scalars with absolute value:

| — B

<d
|

where § is a small tolerance.

Comparison of two vectors with norms:

ly —z||
2

<&



application of norms

Notice that
ly —z||

<d
Iz

is not equivalent to
Iyl =2l

< b.
1z]]

This comparison is important in convergence tests for sequences of
vectors.
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application of norms

Creating a Unit Vector

Given u = [uy, Up, . .., Um]T, the unit vector in the direction of u is

N u

U= ——

Jull2
Proof:
R u
6] = \ U lulle = 1
lull2 ]2 IIUII2

The following are not unit vectors

u u
lulls llulleo

21



orthogonal vectors

From geometric interpretation of the inner product
u-v=|ulz|v|2cos6

u-v uTv

cosb = =
fullz(Iviz Nlull2 [[v]l2

Two vectors are orthogonal when 6 =nt/2 or u-v = 0.

In other words
u'v=0

if and only if u and v are orthogonal.

22



orthonormal vectors

Orthonormal vectors are unit vectors that are orthogonal.
A unit vector has an L, norm of one.

The unit vector in the direction of u is

u

a =
lull2

Since

lulle = vu-u

it follows that u- u = 1 if u is a unit vector.

23



notation

The matrix A with m rows and n columns looks like:

ayr a2 -+ @in

az1  a azn
A =

am1 “o d@mn

aj = element in row i, and column j

24



matrices consist of row and column vectors

As a collection of column vec- As a collection of row vectors
tors - , -
a1
a/
(2)
A=lam|ag| |am A
!
L aim) i

A prime is used to designate a
row vector on this and the fol-
lowing pages.
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preview of the row and column view

Matrix and
vector operations

)

Row and column
operations

)

Element-by-element
operations

26



matrix operations

Addition and subtraction

C=A+8B
or
c,-,j:a,-,,-+b,-,,- i=1,...,m; j:1,...,n
Multiplication by a Scalar
B=0dA
or
bijj=oa;; i=1,..., m;, j=1,..., n
Note

Commas in subscripts are necessary when the subscripts are as-
signed numerical values. For example, a»3 is the row 2, column 3
element of matrix A, whereas ass is the 23rd element of vector a.
When variables appear in indices, such as a; or a;;, the comma is

27



matrix transpose

B=AT

or
b,-,,-:a,-,,- i=1,..., m;j:1 ..... n

28



matrix—vector product

e The Column View
e gives mathematical insight

e The Row View
e easy to do by hand

e The Vector View
e A square matrix rotates and stretches a vector

29



column view of matrix—vector product

Consider a linear combination of a set of column vectors
{ap). a@), -, a(n}. Each a; has m elements

Let x; be a set (a vector) of scalar multipliers
X181y + Xe@e) + ... + XpQ(p) = b
or
n
Y apx=>b
j=1
Expand the (hidden) row index
a4 a2 ain by
a1 ag azn bo
Xt | | +x| . |+ +x| | =

ami am2 amn bm

30



column view of matrix—vector product

Form a matrix with the a ;) as columns

X1

X2
am| awe)| - |am = |b

Xn

Or, writing out the elements

[a11 a2 -+ ain| [b1]
a1 ap - anm| X bo

X2

Xn
Lam1 amz - amn | _bm_

31



column view of matrix—vector product

Thus, the matrix-vector product is

[a11 a2 -+ ain| [b1]
ay ap - anm| X1 bo
X2
Xn
Lam1 amz amn | _bm_

Save space with matrix notation

Ax=0Db

32



column view of matrix—vector product

The matrix—vector product b = Ax
produces a vector b from a linear
combination of the columns in A.

n
b=Ax < b=) ayx
=1

where x and b are column vectors

33



column view of matrix—vector product

Listing 1: Matrix—Vector Multiplication by Columns

initialize: b = zeros(m,1)

1

2 for j=1,..., n

3 for i=1,..., m

4 b(i) = A(i, )x(j) + b(i)
5 end

6 end

34



compatibility requirement

Inner dimensions must agree

A X = b
Imxn [nx1 = [mx1]

35



row view of matrix—vector product

Consider the following matrix—vector product written out as a linear
combination of matrix columns

50 0 —1 g
-3 4 -7 1
12 3 6|3
—1
5 0 0 —1
=4|-3|+2|4|-3|-7|-1] 1
1 2 3 6

This is the column view.

36



row view of matrix—vector product

Now, group the multiplication and addition operations by row:

4H+2H 13

+ (02 + —3) + (=1)(-1) 21
+ (4)(2) + (—7)(—3) +  (1)(=1) = 16
+ 2) + +

(2)(2) (3)(=3)

Final result is identical to that obtained with the column view.

37



row view of matrix—vector product

Product of a 3 x 4 matrix, A, with a 4 x 1 vector, x, looks like

!
a1y . /

X1 8y X b
’ 20 / _
aly x| = aly X| = |b2

r bs

/ X4 gy X
a3)

where a/;), a/,), and a3, are the row vectors constituting the A
matrix.

The matrix—vector product b = Ax
produces elements in b by forming
inner products of the rows of A with x.

38



row view of matrix—vector product

e 0o 0 0 0

39



vector view of matrix—vector product

If A is square, the product Ax has the effect of stretching and rotating
X.

Pure stretching of the column vector

2 0 0] |1 2
0 2 0| |2] =14
0 0 2| |3 6

Pure rotation of the column vector

0 -1 0

40



vector—matrix product

Matrix—vector product

mxn nx1 mx1

Vector-Matrix product

I1xm mx n 1x n 4



vector—maitrix product

Compatibility Requirement: Inner dimensions must agree

u A = v

Mxm [mxn = [1xn]

42



matrix—matrix product

Computations can be organized in six different ways We'll focus on
just two

e Column View — extension of column view of matrix—vector
product

e Row View — inner product algorithm, extension of column view
of matrix—vector product
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column view of matrix—matrix product

The product AB produces a matrix C. The columns of C are linear
combinations of the columns of A.

AB=C < C(j) = Ab(j)

¢ and b(;, are column vectors.

|

°)

i.

o b )

The column view of the matrix—matrix product AB = C is helpful
because it shows the relationship between the columns of A and the
columns of C.

44



inner product (row) view of matrix—matrix product

The product AB produces a matrix C. The ¢; element is the inner
product of row i of A and column j of B.

AB=C = cj = a(; by

a(; is a row vector, by is a column vector.

ag) By G

The inner product view of the matrix—matrix product is easier to use
for hand calculations.
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matrix—matrix product summary

The Matrix—vector product looks like:

The vector—Matrix product looks like:

bood

e o o o
e o o o
e o o o
—
[ ]
[ ]
°
[E)
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matrix—matrix product summary

The Matrix—Matrix product looks like:

47



matrix—matrix product summary

Compatibility Requirement

A B = C

Imxr]l [rxn = [mxn]

Inner dimensions must agree

Also, in general
AB # BA
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linear independence

Two vectors lying along the same line are not independent

1 -2
u= |1 and v=—-"2u=|-2
1 -2

Any two independent vectors, for example,

<
I
|
N
o
=)
a
S
I
- o o

define a plane. Any other vector in this plane of v and w can be
represented by

X =av+pw
x is linearly dependent on v and w because it can be formed by a
linear combination of v and w.

49



linear independence

A set of vectors is linearly independent if it is impossible to use a
linear combination of vectors in the set to create another vector in the
set.

Linear independence is easy to see for vectors that are orthogonal,

for example,
4 0 0
0 -3 0
0|’ 0|’ 1
0 0 0

are linearly independent.

50



linear independence

Consider two linearly independent vectors, u and v.

If a third vector, w, cannot be expressed as a linear combination of u
and v, then the set {u, v, w} is linearly independent.

In other words, if {u, v, w} is linearly independent then
ol+ pBv =25dw
can betrue only ifxc =p =06 =0.
More generally, if the only solution to
X Viqy + Vi) + -+ Vi) =0 (1)

iS a1 =02 =...=«ap=0,then the set {v(1),v2),..., V(n }is linearly
independent. Conversely, if equation (1) is satisfied by at least one
nonzero «;, then the set of vectors is linearly dependent.

51



linear independence

Let the set of vectors {v(1, v(2), . . ., V(n)} be organized as the columns
of a matrix. Then the condition of linear independence is

o8] 0
X2 0

Viy | Viey Vil | - | = (@)
Xn 0

The columns of the m x n matrix, A, are linearly independent if and
only if x = (0,0,..., 0)7 is the only n element column vector that sat-
isfies Ax = 0.
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spaces and subspaces

Group vectors according to number of elements they have. Vectors
from these different groups cannot be mixed.

R' = Space of all vectors with one element.
These vectors define the points along a line.

R2 = Space of all vectors with two elements.
These vectors define the points in a plane.

R" = Space of all vectors with n elements.
These vectors define the points in an
n-dimensional space (hyperplane).
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subspaces

The three vectors

1 —2 3
u=12 V= 1 W= 1
0 3 -3

lie in the same plane. The vectors
have three elements each, so they
belong to R3, but they span a
subspace of R°.

44 X axis
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basis and dimension of a subspace

e A basis for a subspace is a set of linearly independent vectors
that span the subspace.

e Since a basis set must be linearly independent, it also must have
the smallest number of vectors necessary to span the space.
(Each vector makes a unique contribution to spanning some
other direction in the space.)

e The number of vectors in a basis set is equal to the dimension
of the subspace that these vectors span.

e Mutually orthogonal vectors (an orthogonal set) form convenient
basis sets, but basis sets need not be orthogonal.

55



subspaces associated with matrices

The matrix—vector product
y = Ax

creates y from a linear combination of the columns of A

The column vectors of A form a basis for the column space or range
of A.
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matrix rank

e The rank of a matrix, A, is the number of linearly independent
columns in A.

e rank(A) is the dimension of the column space of A.
e Numerical computation of rank(A) is tricky due to roundoff.

Consider
1 0 1
u= |0 v=|1 w= |1
0 0 0

Do these vectors span R3?
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matrix rank

e The rank of a matrix, A, is the number of linearly independent
columns in A.

e rank(A) is the dimension of the column space of A.
o Numerical computation of rank(A) is tricky due to roundoff.

Consider
1 0 1
0.00001 0 0

Do these vectors span R3?
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matrix rank

e The rank of a matrix, A, is the number of linearly independent
columns in A.

e rank(A) is the dimension of the column space of A.
e Numerical computation of rank(A) is tricky due to roundoff.

Consider
1 0 1
e 0 0

Do these vectors span R3?
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