orthogonalization

L. Olson

October 27, 2015

Department of Computer Science
University of Illinois at Urbana-Champaign
objectives

• Revisit SVD and Orthogonal Matrices
• Create orthogonal vectors
• Outline the Gram-Schmidt algorithm for orthogonalization
The normal equations tend to worsen the condition of the matrix.

Theorem

\[
\text{cond}(A^T A) = (\text{cond}(A))^2
\]
other approaches

- **QR factorization.**
 - For $A \in \mathbb{R}^{m \times n}$, factor $A = QR$ where
 - Q is an $m \times m$ orthogonal matrix
 - R is an $m \times n$ upper triangular matrix (since R is an $m \times n$ upper triangular matrix we can write $R = \begin{bmatrix} R' \\ 0 \end{bmatrix}$ where R is $n \times n$ upper triangular and 0 is the $(m - n) \times n$ matrix of zeros)

- **SVD - singular value decomposition**
 - For $A \in \mathbb{R}^{m \times n}$, factor $A = USV^T$ where
 - U is an $m \times m$ orthogonal matrix
 - V is an $n \times n$ orthogonal matrix
 - S is an $m \times n$ diagonal matrix whose elements are the singular values.
orthogonal matrices

Definition

A matrix Q is orthogonal if

$$Q^T Q = QQ^T = I$$

Orthogonal matrices preserve the Euclidean norm of any vector v,

$$\|Qv\|_2^2 = (Qv)^T (Qv) = v^T Q^T Qv = v^T v = \|v\|_2^2.$$
One way to obtain the \(QR \) factorization of a matrix \(A \) is by Gram-Schmidt orthogonalization.

We are looking for a set of orthogonal vectors \(q \) that span the range of \(A \).

For the simple case of 2 vectors \(\{a_1, a_2\} \), first normalize \(a_1 \) and obtain

\[
q_1 = \frac{a_1}{\|a_1\|}.
\]

Now we need \(q_2 \) such that \(q_1^T q_2 = 0 \) and \(q_2 = a_2 + cq_1 \). That is,

\[
R(q_1, q_2) = R(a_1, a_2)
\]

Enforcing orthogonality gives:

\[
q_1^T q_2 = 0 = q_1^T a_2 + cq_1^T q_1
\]
gram-schmidt orthogonalization

\[q_1^T q_2 = 0 = q_1^T a_2 + cq_1^T q_1 \]

Solving for the constant \(c \).

\[c = -\frac{q_1^T a_2}{q_1^T q_1} \]

reformulating \(q_2 \) gives.

\[q_2 = a_2 - \frac{q_1^T a_2}{q_1^T q_1} q_1 \]

Adding another vector \(a_3 \) and we have for \(q_3 \),

\[q_3 = a_3 - \frac{q_2^T a_3}{q_2^T q_2} q_2 - \frac{q_1^T a_3}{q_1^T q_1} q_1 \]

Repeating this idea for \(n \) columns gives us Gram-Schmidt orthogonalization.
Since R is upper triangular and $A = QR$ we have

\[
\begin{align*}
 a_1 &= q_1 r_{11} \\
 a_2 &= q_1 r_{12} + q_2 r_{22} \\
 \vdots &= \vdots \\
 a_n &= q_1 r_{1n} + q_2 r_{2n} + \ldots + q_n r_{nn}
\end{align*}
\]

From this we see that $r_{ij} = \frac{q_i^T a_j}{q_i^T q_i}, j > i$
The orthogonal projector onto the range of q_1 can be written:

\[
\frac{q_1 q_1^T}{q_1^T q_1}
\]

. Application of this operator to a vector a orthogonally projects a onto q_1. If we subtract the result from a we are left with a vector that is orthogonal to q_1.

\[
q_1^T (I - \frac{q_1 q_1^T}{q_1^T q_1}) a = 0
\]
def qr(A):
 Q = np.zeros(A.shape)
 for k in range(A.shape[1]):
 avec = A[:, k]
 q = avec
 for j in range(k):
 q = q - np.dot(avec, Q[:,j])*Q[:,j]