eigenvalues, markov matrices, and the power method

Slides by Olson. Some taken loosely from Jeff Jauregui, Some from Semeraro

L. Olson

Department of Computer Science
University of Illinois at Urbana-Champaign
objectives

- Create a stochastic matrix (or Markov matrix) that represents the probability of moving from one state to the next
- Establish properties of the Markov Matrix
- Find the steady state of a stochastic matrix
- Relate the steady state to an eigenvecture
- Find important eigenvectors with the Power Method
random transitions

• Given a system of “states“, we want to model the transition from state to state over time.
• Let n be the number of states
• So at time k the system is represented by $x_k \in \mathbb{R}^n$.
• $x_k^{(i)}$ is the probability of being in state i at time k

Definition

A probability vector is a vector of positive entries that sum to 1.0.
Definition
A Markov matrix is a square matrix M with columns that are probability vectors. So the entries of M are positive and the column sums are 1.0.

Definition
A Markov Chain is a sequence of probability vectors $x_0, x_1, \ldots, x_k, \ldots$ such that

$$x_{k+1} = Mx_k$$

for some Markov Matrix M
markov chains

- Does a steady-state exist?
- Does a steady state depend on the initial state?
- Will x_{k+1} be a probability vector if x_k is a probability vector?
- Is the steady state unique?
Theorem

Let M *be a Markov Matrix. Then there is a vector* $x \neq 0$ *such that* $Mx = x$.

Proof?

- M^T *is singular. Why?*
- So there is an x *such that* $M^T x = x$
- *or so that* $(M^T - I)x = 0$
- Thus $M - I$ *is singular. Why?*
• Find $x = Ax$ and the elements of x are the probability vector (Basketball Ranking, Google Page Rank, etc).
Suppose that A is $n \times n$ and that the eigenvalues are ordered:

$$|\lambda_1| > |\lambda_2| \geq |\lambda_3| \geq \cdots \geq |\lambda_n|$$

Assuming A is nonsingular, we have a linearly independent set of v_i such that $Av_i = \lambda_i v_i$.

Goal

Computing the value of the largest (in magnitude) eigenvalue, λ_1.
Take a guess at the associated eigenvector, x_0. We know

$$x^{(0)} = c_1 v_1 + \cdots + c_n v_n$$

Since the guess was random, start with all $c_j = 1$:

$$x^{(0)} = v_1 + \cdots + v_n$$

Then compute

$$x^{(1)} = Ax^{(0)}$$
$$x^{(2)} = Ax^{(1)}$$
$$x^{(3)} = Ax^{(2)}$$

...

$$x^{(k+1)} = Ax^{(k)}$$
power method

Or \(x^{(k)} = A^k x^{(0)} \). Or

\[
x^{(k)} = A^k x^{(0)} \\
= A^k v_1 + \cdots + A^k v_n \\
= \lambda_1^k v_1 + \ldots \lambda_n^k v_n
\]

And this can be written as

\[
x^{(k)} = \lambda_1^k \left(v_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k v_2 + \cdots + \left(\frac{\lambda_n}{\lambda_1} \right)^k v_n \right)
\]

So as \(k \to \infty \), we are left with

\[
x^{(k)} \to \lambda v_1
\]
the power method (with normalization)

```plaintext
for k = 1 to kmax
  y = Ax
  r = φ(y)/φ(x)
  x = y/∥y∥∞
```

- often φ(x) = x₁ is sufficient
- r is an estimate of the eigenvalue; x the eigenvector
inverse power method

- We now want to find the smallest eigenvalue
- \(Av = \lambda v \Rightarrow A^{-1} v = \frac{1}{\lambda} v \)
- So “apply” power method to \(A^{-1} \) (assuming a distinct smallest eigenvalue)
- \(x^{(k+1)} = A^{-1} x^{(k)} \)
- Easier with \(A = LU \)
- Update RHS and backsolve with \(U \):
 \[
 UX^{(k+1)} = L^{-1} x^{(k)}
 \]
Theorem

Perron-Frobenius If M is a Markov matrix with positive entries, then M has a unique steady-state vector x.

Theorem

Perron-Frobenius Corollary Given an initial state x_0, then $x_k = M^k x_0$ converges to x.
Example

Problem: Consider n linked webpages. Rank them.

- Let $x_1, \ldots, x_n \geq 0$ represent *importance*
- A link to a page increases the perceived importance of a webpage

Example

Try $n = 4$.

- page 1: 2,3,4
- page 2: 3,4
- page 3: 1
- page 4: 1,3
First attempt

• Let x_k be the number of links to page k
• Problem: a link from an important page like The NY Times has no more weight than lukeo.cs.illinois.edu
Second attempt

- Let x_k be the sum of importance scores of all pages that link to page k
- Problem: a webpage has more influence simply by having more outgoing links
- Problem: the linear system is trivial (oops!)
Third attempt (Brin/Page ’90s)

- Let n_j be the number of outgoing links on page j
- Let

$$x_k = \sum_{j \text{ linking to } k} \frac{x_j}{n_j}$$

- The influence of a page is its importance. It is split evenly to the pages it links to.

Example

Let A be an $n \times n$ matrix as

$$A_{ij} = \begin{cases}
1/n_j & \text{if page } j \text{ links to page } i \\
0 & \text{otherwise}
\end{cases}$$
Sum of column j is $n_j/n_j = 1$, so A is a Markov Matrix

Problem: does not guarantee a unique x s.t. $Ax = x$

Brin-Page: Use instead

$$A \leftarrow 0.85A + 0.15$$

Still a Markov Matrix

Now has all positive entries

Guarantees a unique solution
What does this mean though?

This defines a stochastic process: “PageRank can be thought of as a model of user behavior. We assume there is a random surfer who is given a web page at random and keeps clicking on links, never hitting back, but eventually gets bored and starts on another random page.”

So a surfer clicks on a link on the current page with probability 0.85 and opens a random page with probability 0.15.

PageRank is the probability that the random user will end up on that page.