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Construct a *singular value decomposition* or SVD

Look at some problems the singular values are useful

Highlight several properties of the SVD

What do the singular values mean?

How do then impact our numerics?

What is the cost of computing them?



SVD uses in practice:

1. Search Technology: find closely related documents or images in
a database
Clustering: aggregate documents or images into similar groups
Compression: efficient image storage
Principal axis: find the main axis of a solid (engineering/graphics)

o M 0D

Summaries: Given a textual document, ascertain the most
representative tags

6. Graphs: partition graphs into subgraphs (graphics, analysis)



svd: singular value decomposition

SVD takes an m x n matrix A and factors it:

A =USV’
where U (m x m) and V (n x n) are orthogonal and S (m x n) is
diagonal.
Definition

A is orthogonal if ATA = AAT = I.

S is made up of “singular values”:
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Here, r = rank(A) and p = min(m, n).



we want...
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diagonalizing a matrix

We want to factorize A into U, S, and V. First step: find V. Consider
A =USVT

and multiply by AT

ATA = (USVT)T(usv™) = vsTuTusv’™
Since U is orthogonal
ATA = vs2vT

This is called a similarity transformation.

Definition

Matrices A and B are similar if there is an invertible matrix Q such that
Q 'AQ=8

Theorem

Similar matrices have the same eigenvalues.



Bv =Av

Q 'AQv = Av
AQv = AQv
Aw = Aw.

Further, if v is an eigenvector of B, Qv is an eigenvector of A.



so far...

Need A = USV'
Look for V such that ATA = VS2VT. Here S? is diagonal.

If ATA and S? are similar, then they have the same eigenvalues. So
the diagonal matrix S? is just the eigenvalues of ATA and V is the
matrix of eigenvectors. To see the latter, note that since S? is

diagonal, the eigenvectors are e;, and Ve is just the i column of
VT,



similarly...

Now consider
A =USVT

and multiply by AT from the right
AAT = (USVT)(USVT)T = usvTvsTUT

Since V is orthogonal
AAT = us2u’

Now U is the matrix of eigenvectors of AAT.



We get
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example

Decompose

First construct ATA:

2 1|12 -2 5 -3
Ta_ _
AA= 1“1 1]_[—3 5]
Eigenvalues: Ay =8 and A, = 2. So
8 0 2v2 0
2 _ _



example

Now find VT and U. The columns of VT are the eigenvectors of ATA.

o Aq =8: (ATA—?\1/)V1 =0
=0 Fy_a= |l Hymgmm=| _ |- vere
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e A\ =2: (ATA —)\QI)VQ =0
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o Finally:
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example

Now find U. The columns of U are the eigenvectors of AAT.
e A\ =8: (AAT—A1I)U1 =0
-

0
0

—6

o \» =2: (AATf?\g

e Finally:
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e Together:
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svd: who cares?

How can we actually use A = USVT? We can use this to represent A
with far fewer entries...

Notice what A = USVT looks like:

T T T T T
A =01U1Vy + 0aloVs + -+ 0rUrV, + 0Ury1V, + -+ 0upv,

This is easily truncated to

A =o0o1U4 V1T+ O'2U2V2T+ "'+O'rUrVrT

What are the savings?

e A takes m x n storage
e using k terms of U and V takes k(1 + m + n) storage



