2 Making Models with Polynomials
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Why polynomials?
asx3+ ay x>+ a1 x + ag

o How do we write the general case?
o Why polynomials and not something else?
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Reconstructing a Function From Derivatives

o If we know f(xp),f'(x0),f”(x0), can we reconstruct the function as a poly-
nomial?

F(x)=2774272x + 777 x> 4 -
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Demo: Polynomial Approximation with Polynomials (Part I)



Shifting the Expansion Center

o Can you do this at points other than the origin?
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Errors in Taylor Approximation (1)

o Can't sum infinitely many terms. Have to truncate. How big of an error
does this cause?

Demo: Polynomial Approximation with Polynomials (Part I1)
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Making Predictions with Taylor Truncation Error

o Suppose you expand v/x — 10 in a Taylor polynomial of degree 3 about
the center xo=12. For h; =0.5, you find that the Taylor truncation error

is about 104

What is the Taylor truncation error for h, =0.257
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Demo: Polynomial Approximation with Polynomials (Part II1)



