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Taylor Remainders: the Full Truth

Let f: IR — R be n+ 1-times differentiable on the interval (xo, x) with £(")
continuous on [xg, x]. Then there exists a £ € (xg, x) so that -
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In-class activity: Taylor series



Using Polynomial Approximation

o Suppose we can approximate a function as a polynomial:

0N
f(x)~ a0+ aix + arx® + 33X3.‘5d (!\) &\d’ \@,

How is that useful? Say, if | wanted the integral of 7
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Demo: Computing 7 with Taylor




y
Reconstructing a Function From Point Values C# Pé“"‘VS) ~|

o If we know function values at some points f\@, f(x2), ..., f(xs), can we

~—

reconstruct the function as a polynomial?

F(X)=272 4277+ 727 x% + -
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Demo: Polynomial Approximation with Point Values



Error in Interpolation

O

O

O

What did we (empirically) observe about the error in interpolation in the
demo?

To fix notation: f is the function we're interpolating. f is the interpolant
that obeys f (x;) =f(x;) for x;=x; <...<x,. Let h=x, — x1 be the interval
length.

What is the error at the interpolation nodes?
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Care to make an unfounded prediction? What will you call it?

( %N (C/‘Prwxaw‘,u\,\/ Pél\] ?)‘F d\e 7#&0,% = 0/}"’)?



Making Use of Interpolants

o Suppose we can approximate a function as a polynomial:
f(x)~ ag+ arx + axx? + azx>.

How is that useful? Say, if | wanted the integral of 7

Demo: Computing 7 with Interpolation



More General Functions

o s this technique limited to the monomials {1, x, x?, x3,...}7



