




Computational Cost

◦ What is the computational cost of multiplying two n× n matrices?

◦ What is the computational cost of carrying out LU factorization on an
n× n matrix?



Demo: Complexity of Mat-Mat multiplication and LU



More cost concerns

◦ What’s the cost of solving Ax = b?

◦ What’s the cost of solving Ax = b1, b2, ..., bn?

◦ What’s the cost of finding A−1?



Cost: Worrying about the Constant, BLAS

O(n3) really means

α · n3+ β · n2+ γ · n+ δ.

All the non-leading and constants terms swept under the rug. But: at least

the leading constant ultimately matters.

Getting that constant to be small is surprisingly hard, even for something

deceptively simple such as matrix-matrix multiplication.

Idea: Rely on library implementation: BLAS (Fortran)



Level 1 z =αx + y vector-vector operations
O(n)
?axpy

Level 2 z =Ax + y matrix-vector operations
O(n2)
?gemv

Level 3 C =AB + βC matrix-matrix operations
O(n3)
?gemm

LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.

• banded

• sparse



LU: Special cases

◦ What happens if we feed a non-invertible matrix to LU?

◦ What happens if we feed LU an m× n non-square matrices?



In-class activity: LU factorization 2



9 LU: Applications



9.1 Linear Algebra Applications



Solve a Linear System

◦ LU factorization gives us

PA= LU ,

so that P is a permutation matrix, L is lower triangular, U is upper trian-
gular. How does that help solve a linear system Ax = b?



Solve a Matrix Equation
◦ Suppose we want to solve AX =B.

A and B are given, X is unknown.
(Assume: square and have same size) How can we do that using LU?



Compute an Inverse

◦ Suppose we want to compute the inverse A−1 of a matrix A.
How do we do that using LU?

◦ What’s the computational cost of doing so?



Find the Determinant of a Matrix

◦ How can we find the determinant of a matrix using LU?



Find Row Echelon Form... if we can?

◦ The factor U in pivoted LU looks like it is in upper echelon form. Is it?



Finding the Rank of a Matrix Numerically... if we can?

◦ Can we find the rank of a matrix numerically?



9.2 Interpolation



Recap: Interpolation

Starting point: Looking for a linear combination of functions ϕi to hit given
data points (xi , yi).

Interpolation becomes solving the linear system:

yi = f (xi)=
X

j=0

N func

αjϕj(xi)
||||||||||||||||{z}}}}}}}}}}}}}}}}

Vi j

↔ Vα= y .

Want unique answer: Pick Nfunc=N → V square.

V is called the (generalized) Vandermonde matrix.

Main lesson:

V (coefficients)= (values at nodes).



Rethinking Interpolation

We have so far always used monomials (1, x , x2, x3, ...) and equispaced points
for interpolation. It turns out that this has significant problems.

Demo: Monomial interpolation



Demo: Choice of Nodes for Polynomial Interpolation



Interpolation: Choosing Basis Function and Nodes

Both function basis and point set are under our control. What do we pick?

Ideas for basis functions:

• Monomials 1, x , x2, x3, x4, ...

• Functions that make V = I → ‘Lagrange basis’

• Functions that make V triangular → ‘Newton basis’

• Splines (piecewise polynomials)

• Orthogonal polynomials

• Sines and cosines

• ‘Bumps’ (‘Radial Basis Functions’)

Ideas for nodes:

• Equispaced

• ‘Edge-Clustered’ (so-called Chebyshev/Gauss/... nodes)



Better Conditioning: Orthogonal Polynomials

◦ What caused monomials to have a terribly conditioned Vandermonde?
◦ What’s a way to make sure two vectors are not like that?
◦ But polynomials are functions!

◦ But how can I practically compute the Legendre polynomials?


