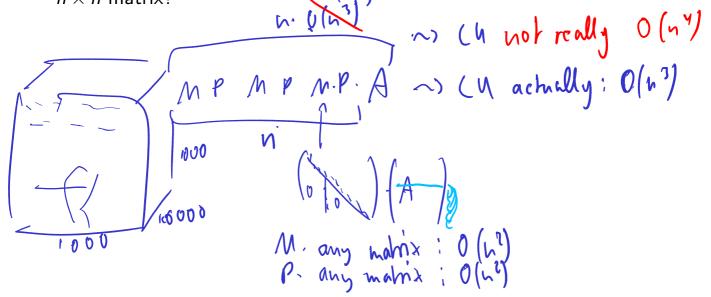


Computational Cost

• What is the computational cost of multiplying two $n \times n$ matrices?

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?



Demo: Complexity of Mat-Mat multiplication and LU

More cost concerns

- What's the cost of solving Ax = b?
- What's the cost of solving $A\mathbf{x} = \mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n$?
- \circ What's the cost of finding A^{-1} ?

Cost: Worrying about the Constant, BLAS

 $O(n^3)$ really means

$$\alpha \cdot (n^3) + \beta \cdot n^2 + \gamma \cdot n + \delta$$
.

 $\frac{\alpha \cdot (n^3 + \beta \cdot n^2 + \gamma \cdot n + \delta.}{\text{All the non-leading and constants terms swept under the rug. But: at least the leading constant ultimately matters.}$ for data reuse

Getting that constant to be small is surprisingly hard, even for something -> opportunity for cache myml, deceptively simple such as matrix-matrix multiplication.

Idea: Rely on library implementation: BLAS (Fortran)

$$z = \alpha x + y \qquad \text{vector-vector operations}$$

$$O(n)$$
 ?axpy

+ y matrix-vector operations $O(n^2)$

BLAS

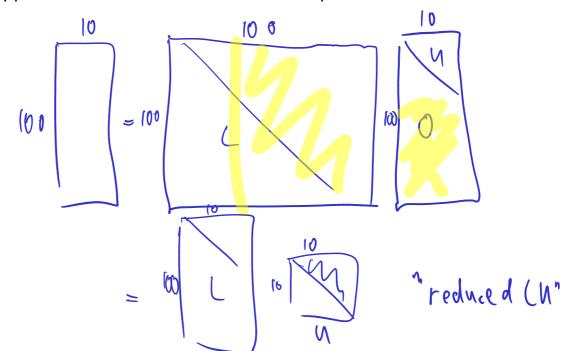
LAPACK: Implements 'higher-end' things (such as LU) using BLAS Special matrix formats can also help save const significantly, e.g.

- banded
- sparse

LU: Special cases

What happens if we feed a non-invertible matrix to LU?

• What happens if we feed LU an $m \times n$ non-square matrices?



In-class activity: LU factorization 2

9 LU: Applications

9.1 Linear Algebra Applications

Solve a Linear System

LU factorization gives us

$$PA = LU$$
, $A = P^{\dagger}U$

so that P is a permutation matrix, L is lower triangular, U is upper triangular. How does that help solve a linear system $A\mathbf{x} = \mathbf{b}$?

Ax=b

$$P'(hx=b)$$
 $(y=p)$
 $y=y$
 y

Solve a Matrix Equation

• Suppose we want to solve AX = B.

A and B are given, X is unknown.

(Assume: square and have same size) How can we do that using LU?

Compute an Inverse

Suppose we want to compute the inverse A^{-1} of a matrix A. How do we do that using LU?

• What's the computational cost of doing so?

Find the Determinant of a Matrix

• How can we find the determinant of a matrix using LU?

$$del(A) = del(PT) \cdot del(L) \cdot del(U)$$

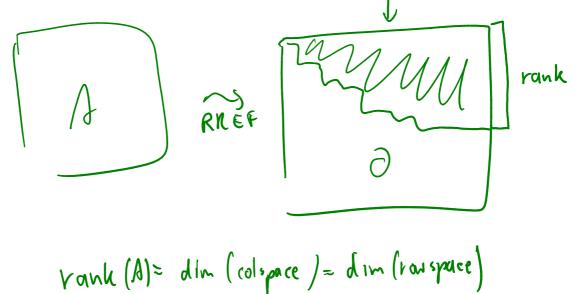
$$del(A) = del(A) = del(A) \cdot del(A)$$

$$del(A) = del(A) \cdot del(A)$$

Find Row Echelon Form... if we can?

1st hat 4? No!

• The factor U in pivoted LU looks like it is in upper echelon form. Is it?



Finding the Rank of a Matrix Numerically... if we can?

Can we find the rank of a matrix numerically? To ask about ramh, we need a tole rance Land do tolerances) postpone can't do RNET

9.2 Interpolation

Recap: Interpolation

Starting point: Looking for a linear combination of functions φ'_i to hit given data points (x_i, y_i) .

Interpolation becomes solving the linear system:

$$y_i = f(x_i) = \sum_{j=0}^{N_{\text{func}}} \alpha_j \varphi_j(x_i) \qquad \leftrightarrow \qquad V\alpha = \mathbf{y}.$$

Want unique answer: Pick $N_{\text{func}} = N \rightarrow V$ square.

V is called the (generalized) Vandermonde matrix.

Main lesson:

$$V(\text{coefficients}) = (\text{values at nodes}).$$

Rethinking Interpolation

We have so far always used monomials $(1, x, x^2, x^3, ...)$ and equispaced points for interpolation. It turns out that this has *significant problems*.

Demo: Monomial interpolation

Demo: Choice of Nodes for Polynomial Interpolation

Interpolation: Choosing Basis Function and Nodes

Both function basis and point set are under our control. What do we pick? Ideas for basis functions:

- Monomials $1, x, x^2, x^3, x^4, \dots$
- Functions that make $V = I \rightarrow$ 'Lagrange basis'
- Functions that make V triangular \rightarrow 'Newton basis'
- Splines (piecewise polynomials)
- Orthogonal polynomials
- (Sines and cosines
- Bumps ('Radial Basis Functions')

Ideas for nodes:

- Equispaced
- 'Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Better Conditioning: Orthogonal Polynomials

- What caused monomials to have a terribly conditioned Vandermonde?
- What's a way to make sure two vectors are *not* like that?
- But polynomials are functions!

But how can I practically compute the Legendre polynomials?