2 Making Models with Polynomials

$$
[1,2,3]
$$

G rector space a, b

$$
a+b \text { number a }
$$

assoc: $\quad(a+b)+c=a+(b+c)$.

$$
(\alpha+\beta) \cdot c=\alpha \cdot c+\beta \cdot c \text {. }
$$

18 multiple chotic $Q \rightarrow 1$ pt 3 coding $Q \rightarrow 2 p 2$
codin, (A, poly, Oaylor, blyo \rightarrow Dythin, nsmpy docs available

Why polynomials?

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

- How do we write the general case?
- Why polynomials and not something else?

Ad ad Caliph

Reconstructing a Function From Derivatives

- If we know $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right), f^{\prime \prime}\left(x_{0}\right)$, can we reconstruct the function as a polynomial?

$$
f(x)=? ? ?+? ? ? x+? ? ? x^{2}+\cdots
$$

$$
f(x)=\sum_{i=0}^{n} \frac{f^{11}\left(\frac{(0)}{i!}\right) i}{i!}
$$

$$
=f(0)+\frac{f^{\prime}(0)}{1} \cdot x=
$$

Demo: Polynomial Approximation with Polynomials (Part I)

Shifting the Expansion Center

- Can you do this at points other than the origin?

$$
\begin{aligned}
& f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{1!} x^{i} \sum_{f\left(x_{0}+x-x_{0}\right)}^{\left\{\begin{array}{l}
0 \\
x \mapsto x_{0} \\
x
\end{array}\right.} \sum_{i=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{i!}\left(x-x_{0}\right)^{i} \\
& x-x_{0}+h: f\left(x_{0}+h\right)=\sum_{j=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{1!} h^{i}
\end{aligned}
$$

Errors in Taylor Approximation (I)

- Can't sum infinitely many terms. Have to truncate. How big of an error does this cause?

Demo: Polynomial Approximation with Polynomials (Part II)
A Taylor expansion up to degree n has error ob n $h^{n} 1$,

$$
\left.\right|_{\Delta} f(x)-\left.\sum_{i=0}^{L} \frac{f^{(i)}(0)}{1!} x^{i}\right|_{\infty}=O\left(h^{n+1}\right)
$$

Making Predictions with Taylor Truncation Error

- Suppose you expand $\sqrt{x-10}$ in a Taylor polynomial of degree 3 about the center $x_{0}=12$. For $h_{1}=0.5$, you find that the Taylor truncation error is about 10^{-4}.
What is the Taylor truncation error for $h_{2}=0.25$?

$$
\begin{aligned}
10^{-4}=\operatorname{Error}\left(h_{1}\right) & =O\left(h_{1}^{4}\right) \approx C \cdot h^{4} \\
\operatorname{Erroh}\left(h_{2}\right) & =O\left(h_{2}^{4}\right) \approx C \cdot h^{4} \\
\text { Error }\left(h_{2}\right)=C \cdot h_{2}^{4} & =\frac{C \cdot h_{1}^{4}}{\operatorname{Error}\left(h_{1}\right)} \cdot\left(\frac{h_{2}}{h_{1}}\right)^{4} \\
& =\left(\frac{h_{2}}{h_{1}}\right)^{4}
\end{aligned}
$$

Demo: Polynomial Approximation with Polynomials (Part III)

