Office hourstoday - 11:20
Recall: Vaylor tmuication erroo f(X)

$$
\left|f(x)-\sum_{i=0}^{\sum_{i}^{n}} f^{f^{i i}\left(x_{0}\right)}\left(x-x_{0}\right)^{i}\right|=0\left(\left(x-x_{0}\right)^{h+1}\right) \quad f^{\prime}\left(f_{0}\right)
$$

Taylor Remainders: the Full Truth

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $n+1$-times differentiable on the interval $\left(x_{0}, x\right)$ with $f^{(n)}$ continuous on $\left[x_{0}, x\right]$. Then there exists a $\xi \in\left(x_{0}, x\right)$ so that

In-class activity: Taylor series

Using Polynomial Approximation

- Suppose we can approximate a function as a polynomial:

$$
f(x) \approx a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} . \leq \tilde{\jmath}(\lambda)
$$

How is that useful? Say, if I wanted the integral of f ?

$$
\begin{aligned}
\int \tilde{f}(x) d x & =\int q_{0}+a_{1} x+q_{2} x^{2}+a_{3} x_{3} d x- \\
& =\int a_{0} d x+q_{1} \int x d x+\cdots
\end{aligned}
$$

$$
\int_{0}^{1} x^{i} d x=\frac{1}{i+1} \cdot \frac{\left.1^{i+1}-0^{i+1 i}\right)}{1}
$$

Demo: Computing π with Taylor

\rightarrow poly degke win be
Reconstructing a Function From Point Values
(\#points)' -1

- If we know function values at some points $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$, can we reconstruct the function as a polynomial?

$$
f(x)=? ? ?+? ? ? x+? ? ? x^{2}+\cdots
$$

$$
\begin{aligned}
& a_{0}+a_{1} \cdot x_{1}+q_{2} x_{1}^{2}+\cdots+a_{m} x_{1}^{m}=f\left(x_{1}\right) \\
& a_{0}+a_{1} \cdot x_{2}+q_{2} x_{2}^{2}+\cdots+a_{m} x_{2}^{m}=f\left(x_{n}\right) \\
& a_{0}+a_{1} \cdot x+q_{2} x^{2}+\cdots+a_{m} x^{m} \\
& a_{0}+a_{1} \cdot x_{n}+q_{2} x_{n}^{2}+\cdots+a_{m} x_{n}^{m}=f\left(x_{n}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & \\
x_{1}^{n-1} \\
1 & x_{2} & \vdots & j \\
1 & \vdots & 1 \\
\vdots & & & 1 \\
1 & x_{n} & x_{n}^{2} & \\
x_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n-1}
\end{array}\right)=\left(\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right)
$$

Vandermonde matrix $\square_{\text {coeffs }}$

Demo: Polynomial Approximation with Point Values

Error in Interpolation

- What did we (empirically) observe about the error in interpolation in the demo?

To fix notation: f is the function we're interpolating. \tilde{f} is the interpolant that obeys $\tilde{f}\left(x_{i}\right)=f\left(x_{i}\right)$ for $x_{i}=x_{1}<\ldots<x_{n}$. Let $h=x_{n}-x_{1}$ be the interval length.

- What is the error at the interpolation nodes?

$$
0 \text { exact }
$$

- Care to make an unfounded prediction? What will you call it?

Making Use of Interpolants

- Suppose we can approximate a function as a polynomial:

$$
f(x) \approx a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

How is that useful? Say, if I wanted the integral of f ?

Demo: Computing π with Interpolation

More General Functions

- Is this technique limited to the monomials $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$?

