Expected Value: Example II

- What is the expected snowfall in Illinois?

$$
\begin{aligned}
& \mathcal{I}\left[\operatorname{Snow}_{n}\right]=\int_{\text {DR }} \operatorname{Snow}(x) p(x) d x \\
& x \text { i longitude } \\
& \text { snow }(x) \text { how mus snowalong }
\end{aligned}
$$

$p(x)$: how likely is a point on long. x
do be in llindis

$$
\iint_{K \mathbb{R}} 1 \cdot\left\{\begin{array}{ll}
1 & \text { if }(x, y) \text { int } \\
0 & \text { if }(x, y) \text { is } \cot
\end{array}=\right.\text { Area }
$$

$$
E\left[S_{n i v}\right]=\int_{n} \int_{R} S_{\text {Low }}(x, y) \underline{y}(x, y) d x d y
$$

Snow (x, y) : how much suss at long. and lar. y $p(x, y)$: how likely is it that $\log x$ and lat is in /L

$$
\begin{aligned}
\rightarrow E(1) & =\iint_{R M} 1 p(x, y) d x d y=1 \\
\tilde{p}(x, y) & = \begin{cases}1 & \text { if }(x, y) \text { in } I \\
0 & \text { nor }\end{cases} \\
p(x, y) & =\text { C. } \tilde{p}(x, y)
\end{aligned}
$$

If we con compute approximate expected values.

- use that do compute $E_{p}[1]$ using

ह.. Use $E[1]=1$ to find C

$$
c=\frac{1}{E_{\dot{p}}}(1)
$$

- Use that $E[$ Snow $]=\int_{R \pi} \operatorname{Snov}(x, y) p(x, y) d$

Tool: Law of Large Numbers

Terminology:

- Sample: A random number x_{i} whose values follow a distribution $p(x)$. In words:
- As the number of samples $N \rightarrow \infty$, the average of samples converges to the expected value with probability 1.

In symbols:

Or:

$$
P\left[\lim _{N \rightarrow \infty} \frac{1}{N}\left(\sum_{n=1}^{N} x_{i}\right)=E[X]\right]=1 .
$$

$$
E[X] \approx \frac{1}{N}\left(\sum_{n=1}^{N} x_{i}\right)
$$

$$
\begin{aligned}
& \left.E \int_{p} \text { Snow }\right)=\iint_{M} S_{n} \text { Sow }^{\prime}(x, y) p(x, y) d x d y \quad E \\
& =\operatorname{Aren}(\text { box }) \quad \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\text {how }}(x, y) p(x, y) \text { uniform, } \text { box }(x, y) d x d y \\
& =\operatorname{Area}(b v x) \cdot E_{\substack{\text { punifif } \\
b o x}}\left[S_{\text {nov }} \cdot p\right)
\end{aligned}
$$

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to evaluate.

- How can we approximate an expected value?

Idea: Draw random samples. Make sure they are distributed according to $p(x)$.

- What is a Monte Carlo method?

Sampling II: Approximating Expected Values

- What if I can't sample from $p(x)$?

Idea: Draw uniformly distributed random samples.

Demo: Computing π using Sampling Demo: Errors in Sampling

Sampling: Error

The Central Limit Theorem states that with

$$
S_{n}:=x_{1}+x_{2}+\cdots+x_{n}
$$

for the $\left(x_{i}\right)$ independent and identically distributed we have that

$$
\frac{S_{n}-n E\left[x_{i}\right]}{\sqrt{\sigma^{2}\left[x_{i}\right] n}} \rightarrow \mathcal{N}(0,1),
$$

i.e. that term approaches the normal distribution. Or, short and imprecise:

$$
\left|\frac{1}{n} S_{n}-E\left[x_{i}\right]\right|=O\left(\frac{1}{\sqrt{n}}\right) .
$$

