Expected Value: Example II

• What is the expected snowfall in Illinois?

If we can compute approximate expected values.
- use that do compute
$$E_{f}(1)$$
 using
 \vec{p} . Use $\vec{e}(2)=1$ to find (
 $C=\frac{1}{E_{f}}(1)$
- Use that $\vec{e}(Snow)=S_{kR}Snov(x,y)p(x,y)d$

Tool: Law of Large Numbers

Terminology:

- Sample: A random number x_i whose values follow a distribution p(x). In words:
 - As the number of samples $N \rightarrow \infty$, the average of samples converges to the expected value with probability 1.

In symbols:

$$P\left[\lim_{N\to\infty}\frac{1}{N}\left(\sum_{n=1}^{N}x_{i}\right)=E[X]\right]=1.$$

 $E[X] \approx \frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)$

Or:

E(Snow) = SS Snowl X14) p(x14) didy E = Aren (ibox) Sin Six Showlx, y)p(x,y) puniform, Lox (x,y) dxdy = Area (box) · Epunif [Snov · p) box

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to evaluate.

• How can we approximate an expected value?

Idea: Draw random samples. Make sure they are distributed according to p(x).

• What is a Monte Carlo method?

Sampling II: Approximating Expected Values

• What if I can't sample from p(x)?

Idea: Draw uniformly distributed random samples.

Demo: Computing π using Sampling **Demo:** Errors in Sampling

Sampling: Error

The Central Limit Theorem states that with

$$S_n := x_1 + x_2 + \dots + x_n$$

for the (x_i) independent and identically distributed we have that

$$\frac{S_n - n E[x_i]}{\sqrt{\sigma^2[x_i]n}} \to \mathcal{N}(0, 1),$$

i.e. that term approaches the normal distribution. Or, short and imprecise:

$$\left|\frac{1}{n}S_n - E[x_i]\right| = O\left(\frac{1}{\sqrt{n}}\right).$$