+ Working with rel evrois
5 Floatin\} Point
$\prod_{-1}^{9} \quad \operatorname{dis} t+\operatorname{dist} 2$
存景dist 1 distlent
$\ddagger \ddagger$ dist 2 didntern

Wanted: Real Numbers... in a computer

- Computers can represent integers, using bits:

$$
23=\underset{L_{16}}{1} \cdot 2^{4}+0 \cdot 2_{3}^{3}+1 \cdot 2_{4}^{2}+1 \cdot 2_{2}^{1}+1 \cdot{\underset{1}{2}}_{0}^{0}=(10111)_{2}
$$

How would we represent fractions, e.g. 23.625?

$$
\begin{aligned}
17= & (10001)_{2} \\
17= & 16+0+0+0+1= \\
& 2^{2} 2^{3} 2^{2} 2^{\prime} 2^{0} \\
23!625= & 2^{4 \prime}+0+0+0+7^{0} \left\lvert\, \begin{array}{ccc}
1 & 1 \\
2^{-1} & 7^{-2} & 2^{-3}
\end{array}\right.
\end{aligned}
$$

Fixed-Point Numbers

- Suppose we use units of 64 bits, with 32 bits for exponents $\geqslant 0$ and 32 bits for exponents <0. What numbers can we represent?

- How many 'digits' of relative accuracy (think relative rounding error) are available for the smallest vs. the largest number?
smallest.
C) hoot smaller: 0 rel.err. 100%
C) heat bigger: 2^{-31} bel en our 100%.
biggest: $?^{31}+\ldots+2^{-32} \approx 2^{31}$
Gmadshaliest: $2^{30}+\ldots+7^{-32} \approx 2^{31}$
C nest bigger: $\tau^{31}+2_{-32}^{-52}$

1
10^{6}
$110^{-6} \mathrm{~m}$

Floating Point numbers

- Convert $13=(1101)_{2}$ into floating point representation.

$$
(1101)_{2}=(110.1)_{2} \cdot 2=(\underline{1.101})_{2} \cdot 2 \underline{3}
$$

- What pieces do you need to store an FP number?

10.

$$
\begin{aligned}
& 425 \approx(1010)_{2}+=(1010.0110)_{2} \\
&(0.0110)_{2} \\
& \hat{1} \uparrow \hat{r}^{2} \uparrow^{2}=(1.0100110) \cdot 2 \underbrace{3}
\end{aligned}
$$

biggot posible numbar:

$$
(1.1111111114 m)_{2} \cdot l^{1024}
$$

smallogt possible number:

$$
\begin{aligned}
\rightarrow & (1.00000)_{2} \cdot 2^{-1023} \\
& (1.000000 . .1)_{2} \cdot 2^{-1023}
\end{aligned}
$$

In-class activity: Floating Point

1. $\underbrace{-1888^{178}}_{\omega \cdot 2^{p}} 1.000 \cdot 2^{\circ}$

$$
\begin{aligned}
& 1=(1,00) 2^{\circ} \quad 6=(1.10) \cdot 7^{2} \\
& 2=(100) \cdot 2 \quad 7-(1.11)^{2} \\
& 3=(1.10)-2^{1} \quad 8=1.2^{2} \\
& 4=(1.00) \cdot 7^{2} \quad y=(1.001) \cdot 2^{3} \\
& s=(1.01) \cdot 2^{2} \quad f(x+h)-f(x-h)
\end{aligned}
$$

Unrepresentable numbers?

- Can you think of a somewhat central number that we cannot represent as

$$
x=(1 .---------)_{2} \cdot 2^{-p} ?
$$

0

Demo: Picking apart a floating point number

