

Wanted: Real Numbers... in a computer

• Computers can represent *integers*, using bits:

 $23 = \underbrace{1 \cdot 2^{4}_{l_{1}} + 0 \cdot 2^{3}_{l_{1}} + 1 \cdot 2^{2}_{l_{1}} + 1 \cdot 2^{0}_{l_{1}} = (10111)_{2}}_{l_{1}}$ How would we represent fractions, e.g. 23.625? $17 = (10001)_{l_{1}}$ $17 = (6 + 0 + 0 + 0 + 1) = 2^{l_{1}}_{l_{1}} + 2^{l_{1}}_{l_{1}}$

Fixed-Point Numbers

Suppose we use units of 64 bits, with 32 bits for exponents ≥0 and 32 bits for exponents <0. What numbers can we represent?

• How many 'digits' of relative accuracy (think relative rounding error) are available for the smallest vs. the largest number? Smallest, 2^{31}

Floating Point numbers

• Convert $13 = (1101)_2$ into floating point representation.

 $(|101\rangle_{2} = (|101\rangle_{1} \cdot 2) = (1.101)_{2} \cdot 2 = 2$

• What pieces do you need to store an FP number?

Unrepresentable numbers?

 \cap

• Can you think of a somewhat central number that we cannot represent as

$$x = (1. _ _ _ _ _]_2 \cdot 2^{-p}?$$

Demo: Picking apart a floating point number