

Unrepresentable numbers?

~

 \circ $\,$ Can you think of a somewhat central number that we cannot represent as

Demo: Picking apart a floating point number

7

$$(2)_{10} = (11)_{2} = (1023 - 1 \text{ should})$$

$$(3)_{10} = (11)_{2} = (1.1) \cdot 2' = (1.1) \cdot 2^{-1023} \text{ normal}$$

$$(2)_{10} = (11)_{2} = (1.1) \cdot 2' = (1.1) \cdot 2^{-1023} \text{ normal}$$

$$(2)_{10} = (123)_{10} = (123)_{10} + (123)_{10$$

Subnormal Numbers ho multiple
What is the smallest representable number in an FP system with 4 stored bits in the significand and an exponent range of [-7, 7]?

$$(1) \bigcirc 0 & 0 & 0 \\ (1) \bigcirc 0 & 0 & 0 \\ (2) \square 0 &$$

Demo: Density of Floating Point Numbers **Demo:** Floating Point vs. Program Logic

Floating Point and Rounding Error

What is the relative error produced by working with floating point numbers?

What is smallest floating point number significand. What's the smallest FP number > 1024 in that same system? What's the smallest FP number > 1024 in that same system? What's the smallest FP number > 1024 in that same system? What is smallest floating point number > 1? Assume 4 stored bits in the 0

0

Can we give that number a name? Ο

What does this say about the relative error incurred in floating point Rel, enor introduced in every fr. op. is ~ machine eps calculations?

What's that same number for double-precision floating point? (52 bits in 0 the significand)

Implementing Arithmetic

5

• How is floating point addition implemented? Consider adding $a = (1.101)_2 \cdot 2^1$ and $b = (1.001)_2 \cdot 2^{-1}$ in a system with three bits in the significand.

$$(1.101)_{2} - 2'$$

 $(1.001)_{2} - 2''$

$$(1, 101) \quad (1, 101$$

$$\left(1, -- \right)$$

Demo: Floating point and the harmonic series

Problems with FP Addition

• What happens if you subtract two numbers of very similar magnitude? As an example, consider $a = (1.1011)_2 \cdot 2^0$ and $b = (1.1010)_2 \cdot 2^0$. **Demo:** Catastrophic Cancellation **In-class activity:** Floating Point 2