Floating point
Recap:

$$
1 \leq 1 \leq 2
$$

$$
\begin{aligned}
217.3= & (\underbrace{1.101-1}_{\hat{\jmath}}) \cdot 2 \frac{7}{5} \\
& (1 \ldots)
\end{aligned}
$$

Unrepresentable numbers?

- Can you think of a somewhat central number that we cannot represent as $x=(1.2 \ldots \ldots)_{2} \cdot 2^{-p}$?

$$
\begin{aligned}
& 0 \longrightarrow \text { Tostore } 0 \text { : significandi } \begin{array}{c}
\text { all zeros }
\end{array} \\
& \text { + special ext. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 1024 \\
& \hat{\imath} \\
& \text { special meaning: "furn off the leadliy l" }
\end{aligned}
$$

Demo: Picking apart a floating point number

$$
\begin{aligned}
& \text { Exponent }=\underset{\substack{i m p l i c i t \\
\text { lust stored }}}{1023-\text { stored }} \\
& (3)_{10}=(11)_{2}=(1.1) \cdot 2^{1}=(1.1) \cdot 2^{21023+1024} \\
& \eta^{-1022}=\left\{\begin{array}{l}
I I \cdot 2^{-1022}
\end{array}\right] \text { normal } \\
& \left.\begin{array}{l}
2^{-1023}=\left(0 \cdot\left(100000{ }^{m 1}\right) \cdot 2^{-1023}\right] \text { Subnormal } \\
0=(0.000000) \cdot 2^{-1023}
\end{array}\right]
\end{aligned}
$$

Subnormal Numbers
normal

- What is the smallest representable number in an FP system with 4 stored bits in the significant and an exponent range of $[-7,7]$?

$$
\begin{aligned}
& (10.001)_{2} \cdot 2^{-8}=2^{-11} \\
& \text { "fp assist" } \rightarrow \text { wokivg w/ subnormal numbers } \\
& \rightarrow \text { super slow }
\end{aligned}
$$

Demo: Density of Floating Point Numbers
Demo: Floating Point vs. Program Logic

$$
\begin{aligned}
& \text { "Underflow" } \\
& \text { "Subnormal" } \rightarrow \text { "gradwal undertow" }
\end{aligned}
$$

Floating Point and Rounding Error
What is the relative error produced by working with floating point numbers?

- What is smallest floating point number >1 ? Assume 4 stored bits in the significand.

$$
\left(1 .-1 l^{l^{-1}}-1\right) \approx 1+\underbrace{2^{-4}} \text { machine cps }
$$

- What's the smallest FP number >1024 in that same system? पLP: unit in the last
- Can we give that number a name? place
- What does this say about the relative error incurred in floating point calculations? Rel, error introduced in every fr. op. is ~ machine eps
- What's that same number for double-precision floating point? (52 bits in the significand)

$$
2^{-52}
$$

Implementing Arithmetic

- How is floating point addition implemented?

Consider adding $a=(1.101)_{2} \cdot 2^{1}$ and $b=(1.001)_{2} \cdot 2^{-1}$ in a system with three bits in the significand. shift onto same e apoharl

$$
\begin{aligned}
& (1.101)_{2} \cdot 2^{1} \\
& -1.001)_{2} \cdot 2^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \leadsto(1.101)_{2} \cdot 2^{1} \\
& \sim(0.010 \operatorname{tog})_{2} \cdot 2^{1} \\
& \\
& \quad(1.111)-1^{1}
\end{aligned}
$$

$$
(1, \ldots)
$$

Demo: Floating point and the harmonic series

Problems with FP Addition

- What happens if you subtract two numbers of very similar magnitude? As an example, consider $a=(1.1011)_{2} \cdot 2^{0}$ and $b=(1.1010)_{2} \cdot 2^{0}$.

Demo: Catastrophic Cancellation

In-class activity: Floating Point 2

