Overview
(1) - prop, of mab, nouns

- condition number of amatrix
- Qa, solve

Recap: math nom

$$
\| \vec{x} h_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{n}}
$$

$$
\begin{aligned}
\| A H_{2} & =\max _{x \rightarrow 0} \frac{\|A \vec{x}\|_{2}}{\|\vec{x}\|_{2}} \\
& =\max _{\|x\|_{2}=1}\|A \vec{x}\|_{2}
\end{aligned}
$$

Properties of Matrix Norms
Matrix norms inherit the vector norm properties:

1. $\|A\|>0 \Leftrightarrow A \neq \mathbf{0}$.
2. $\|\gamma A\|=|\gamma|\|A\|$ for all scalars γ.
3. Obeys triangle inequality $\|A+B\| \leqslant\|A\|+\|B\|$

- But also some more properties that stem from our definition:

$$
\begin{aligned}
& \|A \vec{x}\| \leq\|A \vec{T}\| \vec{x} \| \quad \text { submultiplicativing }\left\|A_{x}\right\| \\
& \|A B\| \leq\|A\|\|B\|
\end{aligned}
$$

Example: Orthogonal Matrices

- What is the 2-norm of an orthogonal matrix?

$$
\begin{aligned}
& \|A\|_{2}=\max _{\|\vec{x}\|_{2}=1}\|A \vec{x}\|_{2}=\max _{h_{i}\| \|_{i}}\|\vec{x}\|_{2} \\
\|A x\|_{2} & =\sqrt{(A x)_{1}^{r}+\cdots+(A x)_{n}^{2}}=1 \\
= & \sqrt{(A x) \cdot\left(A_{\lambda}\right)} \\
= & \sqrt{\left(A_{x}\right)^{r}\left(A_{\lambda}\right)} \\
= & \sqrt{x^{+} A^{r} A x} \\
& =\sqrt{x^{\sigma} x}=\|x\|_{2}
\end{aligned}
$$

(IIIA $\left.\mathrm{A} \mathrm{H}_{1}\right)$

$$
\begin{aligned}
& A^{\top} A=\text { diagroul }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A^{\top} A=I}{\text { orkhogonal }} A A^{d}=I \\
& A B=I \quad B A=I \\
& A^{\top}=A^{-1}
\end{aligned}
$$

Conditioning

- Now, let's study condition number of solving a linear system

T upper bound on the condition number
... with more wok actually "sharp ${ }^{\text {. }}$
\rightarrow best upper bound you congest

- $\quad \operatorname{cond}_{2}(A)=h A\left\|_{2} \cdot\right\| A^{-1} \|_{2}$
$\operatorname{cond}(A)=\|A\|_{\infty} \cdot\left\|A^{-1}\right\|_{\infty}$
condition umber of a matrix is always relative to a given madrid nom,
- If A^{-1} doesn't exist, than
$A_{x}=b$ by conviction $\operatorname{cond}(A)=\infty$.

Demo: Condition number visualized
Demo: Conditioning of 2×2 Matrices

Matrices with Great Conditioning (Part 1)

- Give an example of a matrix that is very well-conditioned. (I.e. has a condition-number that's good for computation.) What is the best possible condition number of a matrix?

Matrices with Great Conditioning (Part 2)

- What is the 2 -norm condition number of an orthogonal matrix A ?

In-class activity: Matrix Conditioning

