Overvien
Condithoning

Annonnements
Exambel 4

Bohinn the la.solve
C fw/subsl
$\rightarrow C h$ whelim madni $\theta A x<b$

More Properties of the Condition Number

- What is cong $\left(A^{-1}\right)$ ?

$$
\operatorname{cond}_{2}(A)=\|A\|_{i} \cdot\left\|A^{-1}\right\|_{2}
$$

$$
\operatorname{cond}\left(A^{-1}\right)=\left\|A^{-1}\right\| \cdot\left\|\left(A^{-1}\right)^{-1}\right\|=\operatorname{con} d(A)
$$

- What is the condition number of applying the matrix-vector multiplication $A \boldsymbol{x}=\boldsymbol{b}$ ? (I.e. now $\boldsymbol{x}$ is the input and $\boldsymbol{b}$ is the output) on Thur

$$
\begin{aligned}
& \begin{array}{l}
\text { Mull } A x \quad \text { on } \sigma \\
\equiv \text { solve } B b=x \quad d^{\text {on }}
\end{array} \\
& \operatorname{conb}_{\text {sone }} B \vec{b}=\overrightarrow{\hat{L}}_{1 N} \rightarrow \operatorname{cond}(B)=\operatorname{cond}\left(A^{-1}\right)=\operatorname{cond}(A)
\end{aligned}
$$

Matrices with Great Conditioning (Part 1)

- Give an example of a matrix that is very well-conditioned. (I.e. has a condition-number that's good for computation.) What is the best possible condition number of a matrix?

$$
\begin{array}{r}
\operatorname{cond}(I)=\|I\|\|I\|=1 \\
\mid=\|I\|=\left\|A A^{-1}\right\| \leq\|A M \cdot\| A^{-1} \|=\operatorname{cond}(A)
\end{array}
$$

Matrices with Great Conditioning (Part 2)

- What is the 2-nom condition number of an orthogonal matrix $A$ ?

$$
\operatorname{cond}_{2}(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}=\|A\|_{2}\left\|A_{Q_{2}}^{\sigma}\right\|_{2}=1
$$

cauls orth.
$\rightarrow$ Orthogonal: computationally great because always well-coudl'tived

In-class activity: Matrix Conditioning

## 8 The ‘Undo’ Button for Linear Operations:

Solving Systems

- Want methods/algorithms to solve linear systems. Starting small, a kind of system that's easy to solve has a ... matrix.


triangular

Triangular matricesSolve


$$
\left.\begin{array}{r}
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{14} \\
& a_{22} & a_{23} \\
a_{24} \\
& & a_{33}
\end{array} a_{34}\right. \\
\\
\\
a_{44} w=b_{44}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
\omega
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) . ~\left(w=\frac{b_{4}}{144} .\right.
$$

uppertri, "Bach war A substitution"
dower fri: "Forward sublet'

Demo: Coding back-substitution

More General Matrices

- What about non-triangular matrices?
Gaussion elimi ration

Gaussian Elimination
Demo: Vanilla Gaussian Elimination

- What do we get by doing Gaussian Elimination?
Row Echelon Tom
- How is that different from being upper triangular?
because it might have extra zero rows
- What if we do not just eliminate downward but also upward?



## Elimination Matrices

- What does this matrix do?

$$
\left.\left(\begin{array}{cccccc}
1 & & & & \\
& 1 & & & \\
-\frac{1}{2} & & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right)\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right)\right] \cdot\left(-\frac{1}{2}\right)
$$

About Elimination Matrices

- Are elimination matrices invertible?

$$
\begin{aligned}
& \text { Yes. } \\
& \text { Just flip the sign below the } \\
& \text { dian }
\end{aligned}
$$

More on Elimination Matrices
Demo: Elimination matrices I

- Idea: With enough elimination matrices, we should be able to get a matrix into row echelon form.
- So what do we get from many combined elimination matrices like that?

Demo: Elimination Matrices II


Products of elimination matrices:

- Just merge their oft-diagonal non zeros
- As long as:
the non zeros are in the same colin or are multiplied left. to nigh l

$$
\begin{aligned}
M_{3} M_{2} M_{1} A & =U \quad \mid M_{3}^{-1} \\
M_{2} M_{1} A & =M_{3}^{-1} U \\
A & =\frac{M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} U}{L}
\end{aligned}
$$

## Summary on Elimination Matrices

- El.matrices with off-diagonal entries in a single column just "merge" when multiplied by one another.
- El.matrices with off-diagonal entries in different columns merge when we multiply (left-column) * (right-column) but not the other way around.
- Inverse: Flip sign below diagonal


## LU Factorization

- Can build a factorization from elimination matrices. How?
- Does this help solve $\boldsymbol{A x}=\boldsymbol{b}$ ?


## Demo: LU factorization

In-class activity: LU Factorization

## LU: Failure Cases?

- Is LU/Gaussian Elimination bulletproof?
- What can be done to get something like an LU factorization?

