Overview

- Ch
- What it's good for < linear algebra
"delimitation mantles"

$$
m_{4} m_{3} \quad M_{1}
$$

$$
A=\underbrace{M_{1}^{-1} \cdots M_{3}^{-1} M_{+}^{-1} M_{5}^{-1} M_{t}^{-1} U}_{L}
$$

Summary on Elimination Matrices

- El.matrices with off-diagonal entries in a single column just "merge" when multiplied by one another.

$$
\text { same colmn } \rightarrow \text { merg }
$$

- El.matrices with off-diagonal entries in different columns merge when we multiply (left-column) * (right-column) but not the other way around.
- Inverse: Flip sign below diagonal

LU Factorization
la. solve
Cu:Can build a factorization from elimination matrices. How?

- Does this help solve $A \boldsymbol{x}=\boldsymbol{b}$?

$$
A=C h
$$

$$
C \underbrace{u x}_{y}=5
$$

$i \dot{y}=b \leftarrow$ forward substinhim $\left(n^{2}\right)$
$u \vec{x}=\vec{y} \leftarrow \quad$ bachuard substintion $\left(n^{2}\right)$
with $\left(4\right.$ in hand, solving $A x-b$ costs $O\left(n^{2}\right)$.

Demo: LU factorization

$$
\begin{array}{lll}
10^{-6} \leqslant 6 & 10^{-16} \\
\text { ontpr } & 10 \frac{10}{} & 1 \\
\text { conn } & \text { input }
\end{array}
$$

In-class activity: LU Factorization

LU: Failure Cases?

- Is LU/Gaussian Elimination bulletproof?

$$
\left(u=\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right)\right.
$$

- What can be done to get something like an LU factorization?

Swap some rows
permutation matrix
Fixing nonexistence of LU

- How do we capture 'row switches' in a factorization?
- What does this process look like then?

$$
M_{3} \theta_{3} M_{2} \quad M_{1} P_{1} A
$$

Q by absolute value "partial pivoting n
'ide : i bole the biggest entry ${ }^{\text {in }}$ the column and swap it outdo the dian. this keeps the factor in the elim, matrix as small as possible less rounding error

Any, perruatarion matrix Init just row swaps) P can be inverted as P^{+}

$$
M_{3} \theta_{3} M_{2} P_{2} M_{1} P_{1} A=M
$$

$$
A=
$$

Tall 15

Computational Cost

- What is the computational cost of multiplying two $n \times n$ matrices?
- What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

Demo: Complexity of Mat-Mat multiplication and LU

