Overview

- num. arlaf / fihitedifferences
- num. int = qhadvature
- eiger values

Demo: Taking derivatives with Vandermonde matrices

$$
\begin{align*}
& p(x)=\alpha_{5} x^{5}+\cdots+\alpha_{0} \cdot 1 \\
& p^{\prime}(x)=\alpha_{5}\left(5 \cdot x^{4}\right)+\cdots+\alpha_{0} \cdot 0 \\
& \rightarrow p^{\prime \prime}(x)=\alpha_{j} \cdot \varphi_{5}^{\prime \prime}(\lambda)+\cdots \varphi \alpha_{0} \cdot \varphi_{0}^{\prime \prime}(\lambda) \\
& C_{,} q(x)=\beta_{5} \cdot \varphi_{5}(x)+\cdots+\beta_{0} \cdot \varphi_{0}(x) \\
& {\left[\begin{array}{l}
\vec{f}^{\prime}=v^{\prime} \underbrace{D}_{V_{\dot{\alpha}}^{-1} \hat{g}} \\
D V^{\prime} V^{-1}
\end{array}\right.} \\
& V_{\alpha}^{D}={ }_{\rho} \\
& D^{2}=\left(v^{1} v^{-1}\right)\left(v^{1} V^{-1}\right) \tag{1}\\
& \vec{B}-V^{-1} D^{2} \vec{j}
\end{align*}
$$

Finite Difference Formulas

It is possible to use the process above to find 'canned' formulas for taking derivatives. Suppose we use three points equispaced points ($x-h, x$, $x+h$) for interpolation (i.e. a degree-2 polynomial).

- What is the resulting differentiation matrix?
- What does it tell us?

w/ $\left(x-\frac{h}{2}, x, x+\frac{h}{2}\right)$
V, V^{\prime} change
if x changes
Expectation:
(1) shouldn't change..

$$
\begin{aligned}
& D\left(\begin{array}{l}
f(x-h) \\
f(x)^{2} \\
f\left(x+\frac{h}{2}\right)
\end{array}\right) \approx\left(\begin{array}{l}
f^{\prime}\left(x-\frac{h}{2}\right) \\
f^{\prime}(:)^{\prime} \\
f^{\prime}\left(x+\frac{h}{2}\right)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f^{\prime}\left(x_{1}\right) x f\left(x_{1}+\xi_{h}\right)-f\left(x_{1}, w_{2}\right)}{h}
\end{aligned}
$$

Computing Integrals with Interpolation

- Can we use a similar process to compute (approximate) integrals of a function f ?

$$
\begin{aligned}
& f(x) \approx p(x)=\alpha_{5} \cdot \varphi_{5}(\lambda)+\cdots+\alpha_{0} \varphi_{0}(\lambda) \\
& \begin{aligned}
& \int_{3}^{5} f(x) d x \approx \int_{3}^{5} p(x) d x=\int \alpha_{5} \cdot \varphi_{5}(\lambda)+\cdots+\alpha_{0} \varphi_{0}(\lambda) d x \\
&=\alpha_{5} \int_{3}^{\int_{3}^{5} \varphi_{5}(x) d x+\cdots+\alpha_{0} \int_{3}^{5} \varphi_{0}(x) d y} \\
& \text { e.g.mononials } \int_{3}^{\sigma} x^{5} d x
\end{aligned}
\end{aligned}
$$

To compute $\int_{a}^{b} f(x) d x \approx \int_{\text {for } n \text { paints }}^{\sum_{i=0}^{n-1}} \alpha_{i} \underbrace{\int_{a}^{b} \varphi_{i}(x) d x}$,

Example: Building a Quadrature Rule
Demo: Computing the Weights in Simpson's Rule

- Suppose we know

$$
\begin{array}{rll}
f\left(x_{0}\right)=2 & f\left(x_{1}\right)=0 & f\left(x_{2}\right)=3 \\
x_{0}=\mathbb{1} & x_{1}=\frac{1}{2} & x_{2}=1
\end{array}
$$

How can we find an approximate integral p $\int_{0}^{1} f(x) d x$

$$
\begin{aligned}
& \int_{0}^{1} 1 d x=1 \quad \int_{0}^{1} x d x=\frac{1}{2} \quad \int_{0}^{1} x^{2} d x=\left(\frac{1}{3} x^{3}\right]_{0}^{1} \\
& \vec{u}=\left(\begin{array}{c}
1 \\
1 / 2 \\
1 / 3
\end{array}\right) \quad \underbrace{h^{\sigma} V} V^{-1} \\
& =\frac{1}{3} \\
& \left.\int_{0}^{1} f(x) d x \approx(0)+4 \cdot f\left(\frac{1}{2}\right)+f(1)\right) \\
&
\end{aligned}
$$

Facts about Quadrature

- What does Simpson's rule look like on $[0,1 / 2]$?
- What does Simpson's rule look like on $[5,6]$?
- How accurate is Simpson's rule?

Demo: Accuracy of Simpson's rule

10 Repeating Linear Operations: Eigenvalues and Steady States

Eigenvalue Problems: Setup/Math Recap
A is an $n \times n$ matrix.

- $\boldsymbol{x} \neq \mathbf{0}$ is called an eigenvector of A if there exists a λ so that

$$
A \boldsymbol{x}=\lambda \boldsymbol{x} .
$$

- In that case, λ is called an eigenvalue.

