10 Repeating Linear Operations: Eigenvalues and Steady States

Quiz 22
Overview
Elynvalues

Eigenvalue Problems: Setup/Math Recap
A is an $n \times n$ matrix.

- $x \neq 0$ is called an eigenvector of A if there exists a λ so that
$\underline{A} \underline{\boldsymbol{x}}=\lambda \boldsymbol{x}$.

$$
\underline{A \underline{d}}=\lambda \stackrel{\downarrow}{\boldsymbol{x}}
$$

- In that case, λ is called an eigenvalue.

Finding Eigenvalues

- How do you find eigenvalues?

$$
\begin{aligned}
& \qquad A \vec{x}=\lambda \vec{x} \\
& \Leftrightarrow(A-\lambda I) \vec{x}=0 \\
& \Leftrightarrow A-\lambda I \text { singular } \\
& (\operatorname{dot}(A-\lambda I)=0 \\
& \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{0}=0
\end{aligned}
$$

Abel showed "apolynomid dike th's with degree $\geqslant 5$ has no gemevel formula for tits roth
\Rightarrow no algorithm. w/ finite number of steps

Transforming Eigenvalue Problems
Suppose we know that $A \boldsymbol{x}=\lambda \boldsymbol{x}$. What are the eigenvalues of these changed matrices?

- Shift. $A \rightarrow \underbrace{A-\sigma I}$
ω Inversion. $A \rightarrow A^{-1}$

$$
(A-\sigma I) \vec{x}=A^{\vec{x}}-\sigma I \vec{x}=\lambda \vec{x}-\sigma \vec{x}=(\lambda-\sigma) \vec{x}
$$

- Power. $A \rightarrow A^{k} \quad A^{3} \vec{x}=A A A \vec{x}^{2}=A A \lambda \vec{x}=\lambda^{3} \dot{x} \quad A A^{-1} \quad \leadsto \frac{1}{\lambda} \vec{x}=A^{-1} \vec{x}^{2}$

Polynomial $\left(A^{3}+5 A^{2}-7 A+4\right) x^{2}$

$$
A^{r} x
$$

$$
\begin{aligned}
& =\lambda^{3} x+5 \lambda^{7}-7 \lambda \vec{x}+4 x \\
& =\left(\lambda^{3}+5 \lambda^{7}-7 \lambda+4\right) \vec{x}
\end{aligned}
$$

$$
\begin{gathered}
A x_{1}=\lambda_{1} x_{1} \\
\vdots \\
A x_{n}=\lambda_{n} x_{n}
\end{gathered}
$$

Changing Eigenvectors
Suppose $A \boldsymbol{x}=\lambda \boldsymbol{x}$.
Can we change the eigenvectors? (but leave the eigenvalues the same)

$$
\begin{aligned}
& \longrightarrow T^{-1} A T \in T \text { invertible matrix } \\
& T^{-1} A T \vec{y}=\lambda^{\prime} \vec{y} \mid T . \\
& A \sigma \vec{y}=\lambda^{\prime}+\vec{y} \Leftarrow \text { Iceni Use } \vec{y}=\nabla^{-1} \vec{x} \\
& \Leftrightarrow A T\left(\sigma^{-1} \vec{x}\right)=\lambda^{\prime} T\left(T^{-1} \vec{x}\right)
\end{aligned}
$$

$\Leftrightarrow \quad A_{\dot{x}}=\begin{aligned} & \lambda \vec{x} \\ & \lambda^{\prime}=\lambda\end{aligned}$
The eigenvalues of $J^{-1} A T$ are the same as those of A, and for each eigenvec. \vec{x} of $A, \quad \vec{y}=T^{-1} \dot{x}$ is anew of $T^{-1} A \sigma^{\text {, }}$

Diagonalizability

- When is a matrix called diagonalizable? diagonal $\left(\begin{array}{lll}1 & & \\ & 2 & \\ & & 3\end{array}\right)$
similarity $\rightarrow T^{-1} A T-D$ transform
if you canfilian
σ so that
$T^{\prime+} A T=B$, then
A and B
are called similar.

Suppose I had all the eigenvectors x_{i}

$$
\begin{aligned}
& A \vec{x}_{i}=\lambda_{i} \vec{x}_{i} \\
& \begin{array}{l}
\rightarrow x=\left(\begin{array}{ccc}
1 & & 1 \\
x_{1} & \cdots & x_{n} \\
1 & 1
\end{array}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & & \\
& 2 & \\
& 3
\end{array}\right)\left(\begin{array}{lll}
\mid & & \\
\hline & & \\
\hline
\end{array}\right. \\
& \left(\begin{array}{lll}
1 & & \\
& 2 & \\
& &
\end{array}\right)= \\
& \left(\begin{array}{lll}
x_{1} & f_{2} & k_{3}
\end{array}\right)\left(\begin{array}{lll}
1 x_{1} & 2 x_{2} & 3_{x_{3}}
\end{array}\right)
\end{aligned}
$$

Are all Matrices Diagonalizable?

- Give characteristic polynomial, eigenvalues, eigenvectors of

$$
\begin{gathered}
A=\left(\begin{array}{ll}
1 & 1 \\
1
\end{array}\right) . \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
1-\lambda
\end{array}\right)=(1-\lambda)^{2}\binom{\lambda_{1}=1}{\lambda_{2}=1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{n}{v}=\binom{n}{v} \longrightarrow \quad \begin{array}{l}
n+v=4 \rightarrow v=0 \\
v=v
\end{array}
\end{gathered}
$$

all eigenvectors ate of the form $\binom{n}{0}$
My eigenvector mali $X=\left(\begin{array}{cc}u_{1} & u_{2} \\ 0 & 0\end{array}\right) \in$ not invertible

Power Iteration

- What are the eigenvalues of A^{1000} ?

$$
\lambda_{1}^{1000}, \ldots, 7 \lambda_{n}^{1000}
$$

Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$ with eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$.
Further assume $\left\|\boldsymbol{x}_{i}\right\|=1$.

Power Iteration: Issues?

- What could go wrong with Power Iteration?

$$
\begin{aligned}
& -\alpha_{1}=0 \\
& \text { - complex • valued eigenvalues/eigenvectors } \\
& -\left|\lambda_{1}\right|=\left|\lambda_{2}\right|
\end{aligned}
$$

What about Eigenvalues?

- Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

$$
\begin{gathered}
\rightarrow \text { Rayleigh quotient (see above) } \\
\frac{x^{\top} A x}{\gamma^{\top} x}
\end{gathered}
$$

Convergence of Power Iteration

- What can you say about the convergence of the power method? Say $\boldsymbol{v}_{1}^{(k)}$ is the k th estimate of the eigenvector \boldsymbol{x}_{1}, and

$$
e_{k}=\left\|\boldsymbol{x}_{1}-\boldsymbol{v}_{1}^{(k)}\right\|
$$

