10 Repeating Linear Operations: Eigenvalues and Steady States

Quit 22 Overview Elgervahres

Eigenvalue Problems: Setup/Math Recap

- A is an $n \times n$ matrix.
 - $\mathbf{x} \neq \mathbf{0}$ is called an eigenvector of A if there exists a λ so that $A\mathbf{x} = \lambda \mathbf{x}$.
 - In that case, λ is called an eigenvalue.

Finding Eigenvalues

• How do you find eigenvalues?

Transforming Eigenvalue Problems

Suppose we know that $A\mathbf{x} = \lambda \mathbf{x}$. What are the eigenvalues of these changed matrices?

• Shift. $\underline{A} \to \underline{A} - \sigma I$ • Shift. $\underline{A} \to \underline{A} - \sigma I$ • Inversion. $A \to A^{-1}$ • Power. $A \to A^{k}$ $A^{-1} \stackrel{\sim}{x} = \frac{1}{\chi} \stackrel{\sim}{x}$ • Power. $A \to A^{k}$ $A^{-1} \stackrel{\sim}{x} = AAA \stackrel{\sim}{k} = AAAA \stackrel{\sim}{k} = AAA \stackrel{\sim}{k}$

-1, 2, 5, (-7)

$$\begin{array}{c|c} & & & \\$$

$$A_{x_n} = \lambda_n x_n$$

Changing Eigenvectors

• Suppose $A\mathbf{x} = \lambda \mathbf{x}$.

Can we change the eigenvectors? (but leave the eigenvalues the same)

-> T-'AT E Jinvorhible matrix $T'_{A}T \vec{y} = \lambda' \vec{y}$ $T \cdot T$ $AT \vec{y} = \lambda' T \vec{y} \quad (deu: Use \vec{y} = T' \vec{x})$ $(\lambda' T) T' (\lambda - (\dot{x}' T) T (\lambda))$ $(E) \quad A \stackrel{2}{\times} = (A) \stackrel{2}{\times} \stackrel{2}{}$ the eigenvalues of J-AT are the same as those of A and for each eigenvec. X of A, G=TX is an ev of TAT,

Diagonalizability

similarity

• When is a matrix called diagonalizable?

transform If you can finda J so that T'AT= O, Then A and B are called similar.

۲ ۲ ۲ 1 in gonal $\rightarrow T'AT - 0'$ Suppose I had all the organizedous X; Axi=X:Xi $\sum_{i} \sum_{j=1}^{n} \left(\begin{array}{c} 1 & 1 \\ x_{i} & \cdots & x_{n} \\ 1 & 1 \end{array} \right)$ AΧ X $\rightarrow \chi^{\gamma}A\chi \in \left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \end{array} \right)^{\nu}$ e diayoza

Are all Matrices Diagonalizable?

• Give characteristic polynomial, eigenvalues, eigenvectors of

$$A = \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix}.$$

$$det \begin{pmatrix} A - \lambda I \end{pmatrix} = det \begin{pmatrix} 1 - \lambda & 1 \\ 1 - \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda \end{pmatrix}^{2} \begin{pmatrix} \lambda & -1 \\ \lambda & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \xrightarrow{} \quad v = V$$

$$A = rigenvechovs at st be form \begin{pmatrix} u \\ d \end{pmatrix}$$

$$My eigenvechov matrix X = \begin{pmatrix} u, & u_{1} \\ 0 & 0 \end{pmatrix} \leftarrow hot in yorbible$$

Power Iteration

Power Iteration: Issues?

• What could go wrong with Power Iteration?

-
$$\alpha_1 = 0$$

- complex-valued eigenvalues/eigenvectors
- $|\lambda_1| = |\lambda_2|$

What about Eigenvalues?

• Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

$$\frac{x^{*}x}{x^{*}y^{*}}$$

Convergence of Power Iteration

• What can you say about the convergence of the power method? Say $\boldsymbol{v}_1^{(k)}$ is the *k*th estimate of the eigenvector \boldsymbol{x}_1 , and

$$e_k = \|\boldsymbol{x}_1 - \boldsymbol{v}_1^{(k)}\|.$$