Overview

- Eigenvalues
- What er are good for

$$
-S V D / l_{S q_{1}}
$$

$(A-\sigma I)^{-1} \in$ power method that
The pow or unithod applied to $(A-O I)^{-1}$ converges to the eigenvector (of A) that's closest to σ.
U Inverse iteration
Can al so choose inge shirk to be the Rayleigh quotient Rayleigh quotient it.

Power Iteration: Issues?

- What could go wrong with Power Iteration?

What about Eigenvalues?

- Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

Convergence of Power Iteration

- What can you say about the convergence of the power method?

Say $\boldsymbol{v}_{1}^{(k)}$ is the k th estimate of the eigenvector \boldsymbol{x}_{1}, and

$$
\begin{aligned}
& e_{k}=\left\|\boldsymbol{x}_{1}-\boldsymbol{v}_{1}^{(k)}\right\| . \\
& e_{2} \pi\left(\frac{\lambda_{2}}{\lambda_{1}}\right) e_{1} \\
& e_{3}=\tau\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2} \quad e_{k} \approx\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} e_{1} \\
& \begin{array}{l}
\text { Possilb le: } \\
\left|\lambda_{2}\right|=\left|\lambda_{1}\right|
\end{array} \quad \begin{array}{l}
\text { power method } \\
\text { wont compenig }
\end{array}
\end{aligned}
$$

() com ilex eigenvaluesi

Inverse Iteration / Rayleigh Quotient Iteration

- Describe inverse iteration.
- Describe Rayleigh Quotient Iteration.

Demo: Power Iteration and its Variants In-class activity: Eigenvalue Iterations

Computing Multiple Eigenvalues

- All Power Iteration Methods compute one eigenvalue at a time. What if I want all eigenvalues?

Deflation: $A \vec{v}=\lambda \vec{v}$

$$
V=\{\alpha \vec{V} ; \alpha \in \mathbb{R}\}
$$

$A: V \rightarrow V$
$A: V^{\perp} \longrightarrow V+V^{\perp}$
 eigenvalues of $A=\{\lambda\} \cup$ eigenvalues of B

Simultaneous Iteration

- What happens if we carry out power iteration on multiple vectors simultaneously?
$A^{k} X \rightarrow$ ell columns go toward the same vector ${ }^{\wedge} 1$

Idea: Keep them different (al every iteration) using Gran-Sdm.dt.

11 Eigenvalues: Applications

Markov chains

- Consider the following graph of states:

Suppose this is an accurate model of the behavior of the average student.
:) How likely are we to find the average student in each of these states?

