Overíaw

- Leasl sqhares/psendoihv.
- Data Fithing
- Noms and condition \#S
- Low-romb approximation

Tall and Skinny Systems
$A=U D U^{-1} e$ does hr always exp
Consider a 'tall and skinny' linear system, i.e. one that has more equations than unknowns:

In the figure: $m>n$. How could we solve that?

$$
A x \cong b
$$

$$
\left\|A_{\underline{x}-b}\right\|_{?}^{2}
$$

$$
\begin{aligned}
& \left\|A_{x}-b\right\|_{\tau}^{2}=\left\|h \varepsilon V^{\gamma}-b\right\|_{\tau}^{2} \\
& =\pi \sum_{\hat{l}_{n}}^{v_{\Delta}^{\sigma} x}-U^{\top} b \|_{2}^{2} \\
& \text { shall }
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=z_{1} / \sigma_{1} \\
& y_{k}=z_{k} / d_{k} \\
& y_{k+1}=0 \cdots y_{n}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { psendo inumse } \quad m
\end{aligned}
$$

$$
\begin{aligned}
& V_{\vec{x}}=\vec{y} \leadsto \vec{x}=V_{\vec{y}} \\
& \text { () (b) ! } \\
& \text { m } \vec{y} \vec{y}=\vec{z} \\
& \vec{x}=V C^{+} U^{\top}{ }^{\top}
\end{aligned}
$$

Solving Least-Squares

- How can I actually solve a least-squares problem $A \boldsymbol{x} \cong \boldsymbol{b}$?

In-class activity: SVD and Least Squares

The Pseudoinverse: A Shortcut for Least Squares

- How could the solution process for $A \boldsymbol{x} \cong \boldsymbol{b}$ be with an SVDA $=U \Sigma V^{\top}$ be 'packaged up'?

The Normal Equations

- You may have learned the 'normal equations' $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$ to solve $A \boldsymbol{x} \cong \boldsymbol{b}$. Why not use those?
$A_{\vec{x}} \cong \vec{b}$

$$
A^{\sigma} A \vec{x}=A^{\sigma} \vec{b}
$$

$$
\hat{1} \text { 亿normaln equations }
$$

$$
\begin{aligned}
& \operatorname{cond}\left(A^{\top} A\right) \leq \operatorname{cond}(A) \cdot \underbrace{\operatorname{cond}\left(A^{\top}\right)}_{i \operatorname{cond}(A)} \approx \operatorname{cond}(A)^{2} \\
& \operatorname{cond}(A B) \leq \operatorname{cond}(A) \operatorname{cond}(B)
\end{aligned}
$$

$L_{\text {G }}$ tend to be poorly conditioned
\rightarrow let's not
13.2 Data Fitting

Fitting a Model to Data

- How can I fit a model to measurements? E.g.:

$$
\left.\begin{array}{c}
\hat{m}\left(t_{1}\right)=\alpha+\beta t_{1}+\gamma t_{1}^{2} \\
\hat{i}\left(t_{47}\right)=\alpha+\beta t_{47}+\gamma t_{41}^{2} \\
\hat{w}\left(t_{300}\right)=\alpha+\beta t_{300}+\gamma t_{300}^{2} \approx m_{47} \\
1 \\
\vdots \\
1 \\
\vdots \\
t_{41} \\
t_{47}^{7} \\
1 \\
t_{300} \\
t_{300}^{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & t_{1} & t_{1}^{7} \\
\gamma \\
\gamma
\end{array}\right) \cong \stackrel{\rightharpoonup}{\alpha}
$$

Demo: Data Fitting using Least Squares
13.3 Norms and Condition Numbers

Meaning of the Singular Values

$$
\left\|U_{x}\right\|_{2}=\|x\|_{2}
$$

- What do the singular values mean? (in particular the first/largest one)

$$
A=h\left(\begin{array}{lll}
\sigma_{1} & & \\
& \vdots & \\
& & \\
& & \\
& b_{n} \text { igpesl } \\
& & \\
o_{n}
\end{array}\right) V^{\sigma}
$$

$$
\begin{aligned}
& \|A\|_{2}=\left\|U E V^{\sigma}\right\|_{2}=\max _{\| \| \|_{2}=1}^{\|} \underline{U} V^{\sigma}\left\|_{2}=\operatorname{mar}\right\|\{\underbrace{V_{x}^{\sigma} \|_{2}}_{\vec{y}} \\
& \left(=\max _{\left\|V^{T} x\right\|_{=1}\|x\|_{i}=1} \|^{\prime}\left(V^{+}+\left\|_{2}=\operatorname{mox}_{n_{y} \|_{2}-1}\right\| \varepsilon\left\|_{2}\right\|_{2}\right.\right. \\
& =\left\|\sum\right\|_{2}=\sigma_{1}
\end{aligned}
$$

Condition Numbers

- How would you compute a 2-norm condition number?

$$
\begin{aligned}
& \left.A=h \sum V^{r}=\underline{\left(\sigma_{1}\right.} \begin{array}{ll}
\sigma_{i} & \\
& \\
& \\
& \sigma_{n}
\end{array}\right) \underline{U}^{\sigma} \\
& \operatorname{cond}(A)=\|A\|\left\|A^{-1}\right\|=\sigma_{1} / \sigma_{n} \\
& A^{-1}=V \varepsilon^{-1} u^{\sigma} \in V\left(\begin{array}{lll}
1 / \sigma_{1} & & \\
& & \\
& (1) \\
& & \\
& & \\
& &
\end{array}\right) u^{\sigma}
\end{aligned}
$$

$$
\text { if } \sigma_{n}=0 \Rightarrow s \text { not invertible } \Rightarrow \operatorname{cond}(A)=\infty
$$

13.4 Low-Rank Approximation

SVD as Sum of Outer Products

- What's another way of writing the SVD?

