Overview

$$
x^{2}+\alpha x+y
$$

Cow-ravk app proximation
Iteration
Eqhath on solving

SVD as Sum of Outer Products

- What's another way of writing the SVD?

$\operatorname{rank}\left(u v^{\sigma}\right)=1$

$$
\begin{aligned}
A=U \sum V^{\sigma} & =\left(\begin{array}{ccc}
1 & 1 \\
n_{1} & \cdots & u_{m} \\
1 & & 1
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & \\
- & i_{1} \\
& \delta_{n}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & & 1 \\
u_{1} & \cdots & u_{n} \\
1 & & 1
\end{array}\right)\left(\begin{array}{l}
-v_{1}- \\
-\sigma_{n} \\
v_{n}-
\end{array}\right)
\end{aligned}
$$

inner porduct
C $\vec{U}^{\nabla} \vec{V}=$ one number

$$
\left(\begin{array}{c}
11 \\
(1) \\
3
\end{array}\right)\left(\begin{array}{lll}
10 & 20 & 30 \\
10 & 20 & 30 \\
20 & 40 & 60 \\
30 & 60 & 90 \\
1 & \hat{1} & \hat{1}
\end{array}\right) \leftarrow
$$

$$
=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\sigma}+\sigma_{2} \vec{n}_{2} \vec{u}_{2}^{\sigma}+\cdots+\sigma_{n} u_{n} v_{n}^{\sigma}
$$

Low-Rank Approximation (I)

- What is the rank of $\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}$?
- What is the rank of $\sigma_{1} \underline{\boldsymbol{u}}_{1} \boldsymbol{v}_{1}^{T}+\sigma_{2}{\underline{\boldsymbol{u}_{2}}}^{2} \boldsymbol{v}_{2}^{T}$?

Demo: Image Compression

Low-Rank Approximation

- What can we say about the low-rank approximation

$$
A_{k}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{T}
$$

to

$$
\rightarrow(A)=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T}+\cdot \cdot\left(+\sigma_{1} \boldsymbol{u}_{n} \boldsymbol{v}_{n}^{T} ? \longleftarrow S V_{1}\right)
$$

For simplicity, assume $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{n}>0$.
Tho among all rank- k matrices B, A_{k} is the one that satisfies

$$
\min _{B}\|A \cdot B\|_{2}=\left\|A \cdot A_{n}\right\|_{2}
$$

Alsoi $\left\|A-A_{k}\right\|_{2}=\left\|\sigma_{k+1} h_{k+1} v_{k+1}^{\alpha}+\ldots \delta_{n} u_{n} v_{h}^{\sigma}\right\|_{2}=\delta_{k+1}$

Part 3:

Approximation-When the Exact Answer is Out of Reach

14 Iteration and Convergence

- What is linear convergence? quadratic convergence?
for pownerit: $\left\|e_{k+1}\right\|=\left|\begin{array}{c}\lambda_{2} \\ \lambda_{1}\end{array}\right|\left\|_{e_{k}}\right\|$

$$
\left\|e_{k+1000}\right\|=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1000}\left\|_{e_{k}}\right\| \in \text { linear }
$$

gains a fried

- possibly frachanat $\|_{e_{k-1}} \mid \leq C$. $\left\|e_{k}\right\|$
number of digits every the
$\left\|e_{u+1}\right\| \subset \frac{C \cdot\left\|e_{k}\right\|^{2} \longleftarrow \text { quadraticonvergence }}{\text { Example }^{2} \text { for quad andecic }}$

$$
\begin{aligned}
& \text { Example for quad andes: } \\
& \begin{array}{l}
h_{1} \eta=0.1 \sim 1 \quad(c=1) \\
n e_{2} \|=0.01=10^{-2}
\end{array} \\
& n e_{2} l=0.01=10^{-8}-2 a \lg g_{1} \\
& \begin{array}{l}
\left\|o_{3}\right\|=10^{-4}=-\left(70^{-1, y i s}\right. \\
\|(e)\|=\left(0^{-1}\right)^{2}=10^{(17.4)}=10^{-8}
\end{array}
\end{aligned}
$$

An iterative mathod convenges with vate r if

$$
\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|^{r}}=C\left(\begin{array}{l}
>0 \\
<\infty
\end{array}\right.
$$

convergent with rak 1: liea
2: quadrahl

About Convergence Rates

Demo: Rates of Convergence

- Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

15 Solving One Equation

Solving Nonlinear Equations

$$
\begin{aligned}
& a x+b=0< \\
& a x^{2}+b x+c=0
\end{aligned}
$$

- What is the goal here?

Given: equation
$f(x)=0 \quad$ Find x sothat the eppation istrue.

$$
\begin{array}{ll}
f(x)=y \quad & \tilde{f}(x)=f(x)-y \\
& \stackrel{\ddots}{f}(x)=0
\end{array}
$$

Bisection Method
Demo: Bisection Method
What's the rate of convergence? What's the constant?

$f(a)$ has a ad bffeenent
sigh then $f(b)$

$$
\begin{aligned}
& f(n)>0 \\
& f(b)<0
\end{aligned}
$$

Newton's Method

- Derive Newton's method.

