X12X1Y Overvier Cow-rank approximation Herchon Equation solving

SVD as Sum of Outer Products
• What's another way of writing the SVD?

$$\begin{array}{c}
 & in use product \\
 & SVD & = & one number \\
 & SVD & = & one numbe$$

$= \sigma_1 \tilde{u}_1 \tilde{v}_1^{\tau} + \sigma_2 \tilde{u}_2 \tilde{v}_2^{\tau} + \cdots + \sigma_n u_n v_n^{\tau}$

Low-Rank Approximation (I)

- What is the *rank* of $\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T$?
- What is the rank of $\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T$? $\boldsymbol{\mathcal{I}}$

Demo: Image Compression

Low-Rank Approximation

• What can we say about the low-rank approximation

$$A_k = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \dots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T$$

to

For

$$\overbrace{A} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T + \cdots \left(+ \sigma_1 \boldsymbol{u}_n \boldsymbol{v}_n^T \right)$$

simplicity, assume $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0.$

$$\begin{array}{c|c} \text{min} & A \cdot B \\ B \end{array} = \|A \cdot A_n\|_2 \end{array}$$

Also:
$$\|A - A_k\|_2 = \|\sigma_{k+1}h_{k+1}v_{k+1}f_{-1} - \sigma_h \Psi_h v_h^T\|_2 = \sigma_{k+1}$$

Part 3: Approximation–When the Exact Answer is Out of Reach

14 Iteration and Convergence

• What is linear convergence? quadratic convergence?

for poweriti
$$\|e_{n+1}\| = \left(\frac{\lambda_1}{\lambda_1}\right) \|e_n\|$$

 $\|e_{h+1000}\| = \left(\frac{\lambda_2}{\lambda_1}\right)^{1000} \|e_h\| = linear convergence$
gains a fixed
possibly fractional? $\|e_{h+1}\| \leq C \cdot \|e_h\| =$
incompose of digits
every time $\|e_{h+1}\| \leq C \cdot \|e_h\|^2 = q_{h}adrahic convergence$
 $\|e_{h+1}\| = 0.1 - 1 \quad (C=1)$
 $he_{1}\| = 0.01 = 10^{-\gamma} \quad -3 \quad (g_{h})^{1/2}$
 $\|e_{h}\| \leq 10^{-\gamma} \quad -3 \quad (g_{h})^{1/2} = 10^{-(\gamma+1)} = 10^{-8}$

An iterative method converges with rate 1 if $\frac{\left\| e_{k+1} \right\|}{\left\| e_{k} \right\|^{r}} = C \begin{pmatrix} > 0 \\ c \infty \end{pmatrix}$ convergent with role 1 ; Mean 2: ghadrahi

About Convergence Rates

Demo: Rates of Convergence

• Characterize linear, quadratic convergence in terms of the 'number of accurate digits'.

15 Solving One Equation

ax+6=0 (**Solving Nonlinear Equations** ax² + 6x + c = 0 What is the goal here? 0 Givon: eghalion Find × sollar the equation is the f(x)=0

Bisection Method

Demo: Bisection Method

• What's the rate of convergence? What's the constant?

Newton's Method

• Derive Newton's method.