
	- Office how changes
_	
	029:1,2,5,6,7,0,11,12 12,14,18
	Leg residual
	Elin matrices
	Nonlinem: Newton's method
	Monte Carlo
	SVD
	Expected value from example
	(55, 6D

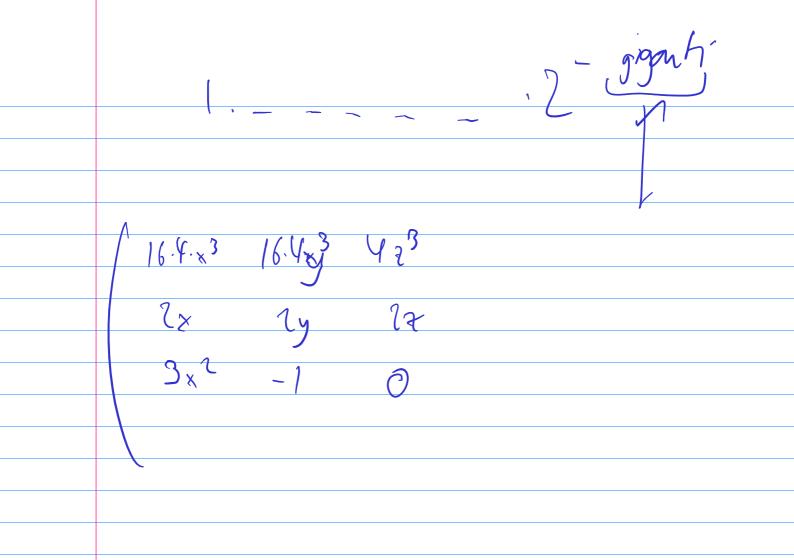
$$\int |x| = x^{2} - y$$

$$\int (x) \approx \int (x) + \int (x) (x - x)$$

$$\int (x) + \int (x) \cdot (x - x)$$

$$||A||_{\infty} = \max_{x \in \mathbb{N}} \{|4_{ij}|\}$$

$$||A||_{\infty} = \sum_{y \in \mathbb{N}} \max_{x \in \mathbb{N}} ||a_{ij}||$$


$$||A||_{\infty} = \sum_{y \in \mathbb{N}} \max_{x \in \mathbb{N}} ||a_{ij}||$$

$$||A||_{\infty} = \sum_{y \in \mathbb{N}} \max_{x \in \mathbb{N}} ||a_{ij}||$$

$$||A||_{\infty} = \sum_{y \in \mathbb{N}} \max_{x \in \mathbb{N}} ||a_{ij}||_{\infty}$$

$$||A||_{\infty} = \sum_{y \in \mathbb{N}} \max_{x \in \mathbb{N}} ||a_{ij}||_{\infty}$$

= 1, σ, -1

$$E\left(\frac{x}{x}\right) = \sum_{x} x \cdot p(x)$$

Golden Section Search

Would like a method like bisection, but for optimization.
 In general: No invariant that can be preserved.
 Need extra assumption.

Demo: Golden Section Search Proportions

Steepest Descent

• Given a scalar function $f: \mathbb{R}^n \to \mathbb{R}$ at a point x, which way is down?

Demo: Steepest Descent

Newton's method (nD)

• What does Newton's method look like in *n* dimensions?

Demo: Newton's method in *n* dimensions

Demo: Nelder-Mead Method

Nonlinear Least Squares/Gauss-Newton

 \circ What if the f to be minimized is actually a 2-norm?

$$f(x) = ||r(x)||_2, r(x) = y - f(x)$$

Demo: Gauss-Newton