Error, Accuracy and Convergence

Error in Numerical Methods i

Every result we compute in Numerical Methods is inaccurate. What is our model of that error?

$$
\begin{aligned}
& \text { Approximate Result }=\text { True Value }+ \text { Error. } \\
& \qquad \tilde{x}=x_{0}+\Delta x
\end{aligned}
$$

Suppose the true answer to a given problem is x_{0}, and the computed answer is \tilde{x}. What is the absolute error?
$\left|x_{0}-\tilde{x}\right|$.

Relative Error i

What is the relative error?

$$
\frac{\left|x_{0}-\tilde{x}\right|}{\left|x_{0}\right|}
$$

Why introduce relative error?

Because absolute error can be misleading, depending on the magnitude of x_{0}. Take an absolute error of 0.1 as an example.

- If $x_{0}=10^{5}$, then $\tilde{x}=10^{5}+0.1$ is a fairly accurate result.
- If $x_{0}=10^{-5}$, then $\tilde{x}=10^{-5}+0.1$ is a completely inaccurate result.

Relative Error ii

Relative error is independent of magnitude.
What is meant by 'the result has 5 accurate digits'?

Say we compute an answer that gets printed as
3.1415777777.

The closer we get to the correct answer, the more of the leading digits will be right:
3.1415777777.

Relative Error iii

This result has 5 accurate digits. Consider another result:
123, 477.7777

This has four accurate digits. To determine the number of accurate digits, start counting from the front (most-significant) non-zero digit.

Observation: 'Accurate digits' is a measure of relative error.
' \tilde{x} has n accurate digits' is roughly equivalent to having a relative error of 10^{-n}. Generally, we can show

$$
\frac{\left|\tilde{x}-x_{0}\right|}{\left|x_{0}\right|}<10^{-n+1} .
$$

Measuring Error i

Why is $|\tilde{x}|-\left|x_{0}\right|$ a bad measure of the error?
Because it would claim that $\tilde{x}=-5$ and $x_{0}=5$ have error 0 .
If \widetilde{x} and x_{0} are vectors, how do we measure the error?
Using something called a vector norm. Will introduce those soon. Basic idea: Use norm in place of absolute value. Symbol: $\|x\|$. E.g. for relative error:

$$
\frac{\left\|\widetilde{x}-x_{0}\right\|}{\left\|x_{0}\right\|} .
$$

Sources of Error i

What are the main sources of error in numerical computation?

- Truncation error:
(E.g. Taylor series truncation, finite-size models, finite polynomial degrees)
- Rounding error
(Numbers only represented with up to~15 accurate digits.)

Digits and Rounding i

Establish a relationship between 'accurate digits' and rounding error.

Suppose a result gets rounded to 4 digits:

$$
3.1415926 \quad \rightarrow \quad 3.142
$$

Since computers always work with finitely many digits, they must do something similar. By doing so, we've introduced an error-'rounding error'.

$$
|3.1415926-3.142|=0.0005074
$$

Digits and Rounding ii

Rounding to 4 digits leaves 4 accurate digits-a relative error of about 10^{-4}.

Computers round every result-so they constantly introduce relative error.
(Will look at how in a second.)

Condition Numbers i

$$
\begin{aligned}
& \text { Methods } f \text { take input } x \text { and produce output } y=f(x) \text {. } \\
& \text { Input has (relative) error }|\Delta x| /|x| \text {. } \\
& \text { Output has (relative) error }|\Delta y| /|y| \text {. } \\
& \text { Q: Did the method make the relative error bigger? If so, by } \\
& \text { how much? }
\end{aligned}
$$

The condition number provides the answer to that question.
It is simply the smallest number κ across all inputs x so that
Rel error in output $\leqslant \kappa \cdot$ Rel error in input,

Condition Numbers ii

or, in symbols,

$$
\kappa=\max _{x} \frac{\text { Rel error in output } f(x)}{\text { Rel error in input } x}=\max _{x} \frac{\frac{|f(x)-f(x+\Delta x)|}{|f(x)|}}{\frac{|\Delta x|}{|x|}} .
$$

nth-Order Accuracy i

Often, truncation error is controlled by a parameter h.
Examples:

- distance from expansion center in Taylor expansions
- length of the interval in interpolation

A numerical method is called ' n th-order accurate' if its truncation error $E(h)$ obeys

$$
E(h)=O\left(h^{n}\right)
$$

Revising Big-Oh Notation i

https://en.wikipedia.org/wiki/Big_0_notation
Let f and g be two functions. Then

$$
\begin{equation*}
f(x)=\mathcal{O}(g(x)) \quad \text { as } x \rightarrow \infty \tag{1}
\end{equation*}
$$

if and only if there exists a value M and some x_{0} so that

$$
\begin{equation*}
|f(x)| \leq M|g(x)| \text { for all } x \geq x_{0} \tag{2}
\end{equation*}
$$

Revising Big-Oh Notation i

or ... think about $x \rightarrow a$
Let f and g be two functions. Then

$$
\begin{equation*}
f(x)=\mathcal{O}(g(x)) \quad \text { as } x \rightarrow a \tag{3}
\end{equation*}
$$

if and only if there exists a value M and some δ so that

$$
\begin{equation*}
|f(x)| \leq M|g(x)| \quad \text { for all } x \text { where } 0<|x-a|<\delta \tag{4}
\end{equation*}
$$

In-class activity: Big-0 and Trendlines i

```
import math
import numpy as np
import matplotlib.pyplot as plt
degrees = np.zeros(1000, dtype=np.int8)
for i in range(1000):
    err = 1.
    j = -1
    while (err > 10.( - 3)):
        j = j +1
        err = C X[i ] ( j +1)/math.factorial( j +1)
    degrees[i] = j
# plotting code, no need to modify
plt.plot(X, degrees, label="Taylor_degree")
```


In-class activity: Relative and Absolute Errors i

```
import numpy as np
from math import factorial
rel_errors = np.zeros(10)
abs_errors = np.zeros(10)
def taylor(x, a, n):
    Returns taylor series expansion about 'a'
    evaluated at 'x' upto the 'n'th degree
    """
    ans = 0
    for j in range(n+1):
        ans += (x-a) j/factorial(j)
    return np.exp(a) ans
for i,a in enumerate(a_pts):
    abs_errors[i] = taylor(x, a, 3)
abs_errors = np.abs((abs_errors-np. exp (x)))
rel_errors = np.abs(abs_errors)/np.exp(x)
```

