Error, Accuracy and Convergence

Error in Numerical Methods i

Every result we compute in Numerical Methods is inaccurate. What is our model of that error?

Approximate Result = True Value + Error.

$$\tilde{x} = x_0 + \Delta x$$
.

Suppose the true answer to a given problem is x_0 , and the computed answer is \tilde{x} . What is the absolute error?

$$|x_0 - \tilde{x}|$$
.

1

Relative Error i

What is the relative error?

$$\frac{|x_0 - \tilde{x}|}{|x_0|}$$

Why introduce relative error?

Because absolute error can be misleading, depending on the magnitude of x_0 . Take an absolute error of 0.1 as an example.

- If $x_0 = 10^5$, then $\tilde{x} = 10^5 + 0.1$ is a fairly accurate result.
- If $x_0 = 10^{-5}$, then $\tilde{x} = 10^{-5} + 0.1$ is a completely inaccurate result.

Relative Error ii

Relative error is independent of magnitude.

What is meant by 'the result has 5 accurate digits'?

Say we compute an answer that gets printed as

3.1415777777.

The closer we get to the correct answer, the more of the leading digits will be right:

3.1415777777.

Relative Error iii

This result has 5 accurate digits. Consider another result:

This has four accurate digits. To determine the number of accurate digits, start counting from the front (most-significant) non-zero digit.

Observation: 'Accurate digits' is a measure of relative error.

' \tilde{x} has *n* accurate digits' is roughly equivalent to having a relative error of 10⁻ⁿ. Generally, we can show

$$\frac{|\tilde{x} - x_0|}{|x_0|} < 10^{-n+1}.$$

Measuring Error i

Why is $|\tilde{x}| - |x_0|$ a bad measure of the error?

Because it would claim that $\tilde{x} = -5$ and $x_0 = 5$ have error 0.

If \tilde{x} and x_0 are vectors, how do we measure the error?

Using something called a vector norm. Will introduce those soon. Basic idea: Use norm in place of absolute value. Symbol: $\|x\|$. E.g. for relative error:

$$\frac{\left\|\widetilde{\mathbf{x}}-\mathbf{x}_0\right\|}{\|\mathbf{x}_0\|}.$$

5

Sources of Error i

What are the main sources of error in numerical computation?

- Truncation error:
 (E.g. Taylor series truncation, finite-size models, finite polynomial degrees)
- Rounding error (Numbers only represented with up to 15 accurate digits.)

Digits and Rounding i

Establish a relationship between 'accurate digits' and rounding error.

Suppose a result gets rounded to 4 digits:

$$3.1415926 \rightarrow 3.142.$$

Since computers always work with finitely many digits, they must do something similar. By doing so, we've introduced an error-'rounding error'.

$$|3.1415926 - 3.142| = 0.0005074$$

7

Digits and Rounding ii

Rounding to 4 digits leaves 4 accurate digits—a relative error of about 10^{-4} .

Computers round *every* result–so they *constantly* introduce relative error.

(Will look at how in a second.)

Condition Numbers i

Methods f take input x and produce output y = f(x). Input has (relative) error $|\Delta x| / |x|$.

Output has (relative) error $|\Delta y| / |y|$.

Q: Did the method make the relative error bigger? If so, by how much?

The condition number provides the answer to that question. It is simply the smallest number κ across all inputs x so that

Rel error in output $\leqslant \kappa \cdot \text{Rel error}$ in input,

Condition Numbers ii

or, in symbols,

$$\kappa = \max_{x} \frac{\text{Rel error in output } f(x)}{\text{Rel error in input } x} = \max_{x} \frac{\frac{|f(x) - f(x + \Delta x)|}{|f(x)|}}{\frac{|\Delta x|}{|x|}}$$

nth-Order Accuracy i

Often, truncation error is controlled by a parameter h.

Examples:

- · distance from expansion center in Taylor expansions
- · length of the interval in interpolation

A numerical method is called 'nth-order accurate' if its truncation error E(h) obeys

$$E(h) = O(h^n).$$

Revising Big-Oh Notation i

https://en.wikipedia.org/wiki/Big_O_notation

Let f and g be two functions. Then

$$f(x) = \mathcal{O}(g(x))$$
 as $x \to \infty$ (1)

if and only if there exists a value M and some x_0 so that

$$|f(x)| \le M|g(x)|$$
 for all $x \ge x_0$ (2)

Revising Big-Oh Notation i

or ... think about $x \rightarrow a$

Let f and g be two functions. Then

$$f(x) = \mathcal{O}(g(x))$$
 as $x \to a$ (3)

if and only if there exists a value M and some δ so that

$$|f(x)| \le M|g(x)|$$
 for all x where $0 < |x - a| < \delta$ (4)

In-class activity: Big-O and Trendlines i

```
import math
import numpy as np
import matplotlib.pyplot as plt
degrees = np.zeros(1000, dtype=np.int8)
for i in range (1000):
    err = 1.
    i = -1
    while (err > 10. (-3)):
     j = j+1
        err = C X[i] (j+1)/math.factorial(j+1)
    degrees[i] = i
# plotting code, no need to modify
plt.plot(X, degrees, label="Taylor_degree")
```

In-class activity: Relative and Absolute Errors i

```
import numpy as np
from math import factorial
rel_errors = np.zeros(10)
abs errors = np.zeros(10)
def taylor(x, a, n):
    Returns taylor series expansion about 'a'
    evaluated at 'x' upto the 'n'th degree
    ans = 0
    for j in range(n+1):
        ans += (x-a) j/factorial(j)
    return np.exp(a) ans
for i.a in enumerate(a pts):
    abs errors[i] = taylor(x, a, 3)
abs_errors = np.abs((abs_errors-np.exp(x)))
rel errors = np.abs(abs errors)/np.exp(x)
```