
Error, Accuracy and Convergence

Error in Numerical Methods i

Every result we compute in Numerical Methods is inaccurate.
What is our model of that error?

Approximate Result = True Value+ Error.

x̃ = x0 +∆x.

Suppose the true answer to a given problem is x0, and the
computed answer is x̃. What is the absolute error?

|x0 − x̃|.

1

Relative Error i

What is the relative error?

|x0 − x̃|
|x0|

Why introduce relative error?

Because absolute error can be misleading, depending on the
magnitude of x0. Take an absolute error of 0.1 as an example.

• If x0 = 105, then x̃ = 105 + 0.1 is a fairly accurate result.
• If x0 = 10−5, then x̃ = 10−5 + 0.1 is a completely inaccurate
result.

2

Relative Error ii

Relative error is independent of magnitude.

What is meant by ‘the result has 5 accurate digits’?

Say we compute an answer that gets printed as

3.1415777777.

The closer we get to the correct answer, the more of the
leading digits will be right:

3.1415777777.

3

Relative Error iii
This result has 5 accurate digits. Consider another result:

123, 477.7777

This has four accurate digits. To determine the number of
accurate digits, start counting from the front (most-significant)
non-zero digit.

Observation: ‘Accurate digits’ is a measure of relative error.

‘x̃ has n accurate digits’ is roughly equivalent to having a
relative error of 10−n. Generally, we can show

|x̃ − x0|
|x0|

< 10−n+1.

4

Measuring Error i

Why is |x̃| − |x0| a bad measure of the error?

Because it would claim that x̃ = −5 and x0 = 5 have error 0.

If x̃ and x0 are vectors, how do we measure the error?

Using something called a vector norm. Will introduce those
soon. Basic idea: Use norm in place of absolute value. Symbol:
‖x‖. E.g. for relative error: ∥∥x̃ − x0

∥∥
‖x0‖

.

5

Sources of Error i

What are the main sources of error in numerical computation?

• Truncation error:
(E.g. Taylor series truncation, finite-size models, finite
polynomial degrees)

• Rounding error
(Numbers only represented with up to ̃15 accurate digits.)

6

Digits and Rounding i

Establish a relationship between ‘accurate digits’ and round-
ing error.

Suppose a result gets rounded to 4 digits:

3.1415926 → 3.142.

Since computers always work with finitely many digits, they
must do something similar. By doing so, we’ve introduced an
error–‘rounding error’.

|3.1415926− 3.142| = 0.0005074

7

Digits and Rounding ii

Rounding to 4 digits leaves 4 accurate digits–a relative error of
about 10−4.

Computers round every result–so they constantly introduce
relative error.

(Will look at how in a second.)

8

Condition Numbers i

Methods f take input x and produce output y = f (x).
Input has (relative) error |∆x| / |x|.
Output has (relative) error |∆y| / |y|.
Q: Did the method make the relative error bigger? If so, by
how much?

The condition number provides the answer to that question.

It is simply the smallest number κ across all inputs x so that

Rel error in output 6 κ · Rel error in input,

9

Condition Numbers ii

or, in symbols,

κ = max
x

Rel error in output f (x)
Rel error in input x

= max
x

|f (x)−f (x+∆x)|
|f (x)|
|∆x|
|x|

.

10

nth-Order Accuracy i

Often, truncation error is controlled by a parameter h.

Examples:

• distance from expansion center in Taylor expansions

• length of the interval in interpolation

A numerical method is called ‘nth-order accurate’ if its
truncation error E(h) obeys

E(h) = O(hn).

11

Revising Big-Oh Notation i

https://en.wikipedia.org/wiki/Big_O_notation

Let f and g be two functions. Then

f (x) = O(g(x)) as x → ∞ (1)

if and only if there exists a value M and some x0 so that

|f (x)| ≤ M|g(x)| for all x ≥ x0 (2)

12

https://en.wikipedia.org/wiki/Big_O_notation

Revising Big-Oh Notation i

or ... think about x → a

Let f and g be two functions. Then

f (x) = O(g(x)) as x → a (3)

if and only if there exists a value M and some δ so that

|f (x)| ≤ M|g(x)| for all x where 0 < |x − a| < δ (4)

13

In-class activity: Big-O and Trendlines i

import math
import numpy as np
import matplot l ib . pyplot as p l t

degrees = np . zeros (1000 , dtype=np . in t8)

for i in range (1 0 0 0) :
e r r = 1 .
j = −1
while (err > 1 0 . (− 3)) :

j = j +1
e r r = C X [i] (j + 1)/math . f a c t o r i a l (j + 1)

degrees [i] = j

p lo t t i ng code , no need to modify

p l t . p lo t (X , degrees , l abe l = ” Tay lor ␣degree ”)

14

In-class activity: Relative and Absolute Errors i

import numpy as np
from math import f a c t o r i a l
r e l _e r ro r s = np . zeros (1 0)
abs_errors = np . zeros (1 0)

def t a y l o r (x , a , n) :
” ” ”
Returns ta y l o r s e r i e s expansion about ‘ a ‘
evaluated at ‘ x ‘ upto the ‘n ‘ th degree
” ” ”
ans = 0
for j in range (n + 1) :

ans += (x−a) j / f a c t o r i a l (j)
return np . exp (a) ans

for i , a in enumerate (a_pts) :
abs_errors [i] = t a y l o r (x , a , 3)

abs_errors = np . abs ((abs_errors−np . exp (x)))
r e l _e r ro r s = np . abs (abs_errors)/np . exp (x)

15

	Error, Accuracy and Convergence

