Graphs
How could this (directed) graph be written as a matrix?

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
What is the general rule for turning a graph into a matrix?

If there is an edge from node i to node j, then $A_{ji} = 1$.
(otherwise zero)

What does the matrix for an undirected graph look like?

Symmetric.
How could we turn a *weighted graph* (i.e. one where the edges have weights—maybe ‘pipe widths’) into a matrix?

Allow values other than zero and one for the entries of the matrix.
If we multiply a graph matrix by the ith unit vector, what happens?
We get a vector that indicates (with a 1) all the nodes that are reachable from node i.

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
\end{pmatrix}.
\]
Consider the following graph of states:

Suppose this is an accurate model of the behavior of the average student. :) Can this be described using a matrix?
Important assumption: Only the most recent state matters to determine probability of next state. This is called the Markov property, and the model is called a Markov chain.

Write transition probabilities into matrix as before: (Order: surf, study, eat—‘from’ state along columns)

\[
A = \begin{pmatrix}
0.8 & 0.6 & 0.8 \\
0.2 & 0.3 & 0 \\
0 & 0.1 & 0.2 \\
\end{pmatrix}
\]

Observe: Columns add up to 1, to give sensible probability distribution of next states. Given probabilities of states \(p = (p_{\text{surf}}, p_{\text{study}}, p_{\text{eat}}) \), \(Ap \) gives us the probabilities after one unit of time has passed.
PageRank

Example
Problem: Consider n linked webpages. Rank them.

- Let $x_1, \ldots, x_n \geq 0$ represent importance
- A link to a page increases the perceived importance of a webpage

Example
Try $n = 4$.

- page 1: 2,3,4
- page 2: 3,4
- page 3: 1
- page 4: 1,3
First attempt

• Let x_k be the number of links to page k
• Problem: a link from an important page like The NY Times has no more weight than lukeo.cs.illinois.edu
Second attempt

• Let x_k be the sum of importance scores of all pages that link to page k
• Problem: a webpage has more influence simply by having more outgoing links
• Problem: the linear system is trivial (oops!)
Third attempt (Brin/Page ’90s)

• Let n_j be the number of outgoing links on page j

• Let

$$x_k = \sum_{j \text{ linking to } k} \frac{x_j}{n_j}$$

• The influence of a page is its importance. It is split evenly to the pages it links to.

Example

Let A be an $n \times n$ matrix as

$$A_{ij} = \begin{cases} 1/n_j & \text{if page } j \text{ links to page } i \\ 0 & \text{otherwise} \end{cases}$$
Page Rank

• Sum of column j is $n_j/n_j = 1$, so A is a Markov Matrix
• Problem: does not guarantee a unique x s.t. $Ax = x$
• Brin-Page: Use instead

$$A \leftarrow 0.85A + 0.15$$

• Still a Markov Matrix
• Now has all positive entries
• Guarantees a unique solution
Page Rank

\[A \leftarrow 0.85A + 0.15 \]

- What does this mean though?
- This defines a stochastic process: “PageRank can be thought of as a model of user behavior. We assume there is a random surfer who is given a web page at random and keeps clicking on links, never hitting back, but eventually gets bored and starts on another random page.”
- So a surfer clicks on a link on the current page with probability 0.85 and opens a random page with probability 0.15.
- PageRank is the probability that the random user will end up on that page.
Theory

Theorem
Perron-Frobenius If \(M \) is a Markov matrix with positive entries, then \(M \) has a unique steady-state vector \(x \).

Theorem
Perron-Frobenius Corollary Given an initial state \(x_0 \), then \(x_k = M^k x_0 \) converges to \(x \).
Markov Application

We consider a light weight version of computing a realistic BCS ranking. One difficult aspect of the BCS rankings for college football is that not every team plays each other.

- Consider a simpler version of ranking Big Ten teams after the first four weeks of play.
- Not every team has played each other (or even played another Big Ten Team).
Consider the following games:

<table>
<thead>
<tr>
<th>Michigan</th>
<th>16</th>
<th>Purdue</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iowa</td>
<td>38</td>
<td>Wisconsin</td>
<td>17</td>
</tr>
<tr>
<td>Iowa</td>
<td>28</td>
<td>Illinois</td>
<td>23</td>
</tr>
<tr>
<td>Minnesota</td>
<td>34</td>
<td>Michigan</td>
<td>21</td>
</tr>
<tr>
<td>Minnesota</td>
<td>23</td>
<td>Purdue</td>
<td>10</td>
</tr>
<tr>
<td>Purdue</td>
<td>31</td>
<td>Michigan</td>
<td>6</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>33</td>
<td>Illinois</td>
<td>25</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>38</td>
<td>Purdue</td>
<td>23</td>
</tr>
<tr>
<td>Illinois</td>
<td>27</td>
<td>Iowa</td>
<td>6</td>
</tr>
<tr>
<td>Illinois</td>
<td>20</td>
<td>Wisconsin</td>
<td>12</td>
</tr>
</tbody>
</table>
The adjacency matrix for this problem is:

\[
A_{i,j} = \begin{cases}
 w_{i,j} & \text{team } i \text{ beats team } j \\
 0 & \text{otherwise}
\end{cases}
\]

where \(w_{i,j} \) is the absolute value of the difference between scores. Order the teams 1-Michigan, 2-Iowa, 3-Minnesota, 4-Purdue, 5-Wisconsin, 6-Illinois. Now, \(w_{1,3} \) represents a victory by Michigan over Minnesota by the amount assigned to \(w_{1,3} \).
As with the Google matrix we need the column sums to be one (to guarantee values of the eigenvector to be in \([0, 1]\)), so let

\[
H_{i,j} = \frac{1}{\sum_{k=1}^{n} A_{k,j}} A_{i,j}
\]

where we ignore any zero columns.
Markov Application

With this we have

\[
A = \begin{bmatrix}
0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 21 & 5 \\
13 & 0 & 0 & 13 & 0 & 0 \\
25 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 15 & 0 & 8 \\
0 & 21 & 0 & 0 & 8 & 0 \\
\end{bmatrix}
\]

and

\[
H = \begin{bmatrix}
0 & 0 & 0 & 3/31 & 0 & 0 \\
0 & 0 & 0 & 0 & 21/29 & 5/13 \\
13/38 & 0 & 0 & 13/31 & 0 & 0 \\
25/38 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 15/31 & 0 & 8/13 \\
0 & 1 & 0 & 0 & 8/29 & 0 \\
\end{bmatrix}
\]
Markov Application

Teams that are undefeated have zero columns in H. We transform H into a *stochastic matrix* (columns add to 1) by performing a rank-1 update:

$$H \leftarrow H + ua^T.$$

Letting a be 1 for undefeated teams and 0 otherwise and u be $1/6$ we have

$$a = [001000]^T \quad u = (1/6)[111111]^T$$

Thus

$$H + ua^T = \begin{bmatrix}
0 & 0 & 1/6 & 3/31 & 0 & 0 \\
0 & 0 & 1/6 & 0 & 21/29 & 5/13 \\
13/38 & 0 & 1/6 & 13/31 & 0 & 0 \\
25/38 & 0 & 1/6 & 0 & 0 & 0 \\
0 & 0 & 1/6 & 15/31 & 0 & 8/13 \\
0 & 1 & 1/6 & 0 & 8/29 & 0
\end{bmatrix}.$$
Markov Application

As with PageRank, we have a probability parameter $\alpha = 0.85$. In the BCS rankings, this would correspond to the likelihood that a voter would change their vote based on a loss to a higher ranked team. The final Google-like matrix is then

$$G = \alpha(H + ua^T) + (1 - \alpha)(1/6)ee^T$$

or

$$G = 0.85 \begin{bmatrix}
 0 & 0 & 1/6 & 3/31 & 0 & 0 \\
 0 & 0 & 1/6 & 0 & 21/29 & 5/13 \\
 13/38 & 0 & 1/6 & 13/31 & 0 & 0 \\
 25/38 & 0 & 1/6 & 0 & 0 & 0 \\
 0 & 0 & 1/6 & 15/31 & 0 & 8/13 \\
 0 & 1 & 1/6 & 0 & 8/29 & 0 \\
\end{bmatrix} + 0.15 \begin{bmatrix}
 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}$$
Applying the power method to the matrix G gives the team rankings. The number one team corresponds to the largest element of the eigenvector. After 20 iterations beginning with a random vector the normalized eigenvector is:

\[
\begin{bmatrix}
0.0780 \\
0.5663 \\
0.1315 \\
0.1124 \\
0.4590 \\
0.6577
\end{bmatrix} \rightarrow
\begin{bmatrix}
\text{Illinois} \\
\text{Iowa} \\
\text{Wisconsin} \\
\text{Minnesota} \\
\text{Purdue} \\
\text{Michigan}
\end{bmatrix}
\]

This shows that the team listed in position six has the largest component and it therefore first in the ranking.
Sparsity
Sparse Matrices

• Vague definition: matrix with few nonzero entries
• For all practical purposes: an $m \times n$ matrix is sparse if it has $O(\min (m, n))$ nonzero entries.
• This means roughly a constant number of nonzero entries per row and column
Sparse Matrices

• Other definitions use a slow growth of nonzero entries with respect to n or m.

• Wilkinson’s Definition: “..matrices that allow special techniques to take advantage of the large number of zero elements.” (J. Wilkinson)

• Applications which lead to sparse matrices: Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, data analysis, information retrieval (LSI), circuit simulation, device simulation, ...
Sparse Matrices: The Goal

- To perform standard matrix computations economically i.e., without storing the zeros of the matrix.
- For typical Finite Element /Finite difference matrices, number of nonzero elements is $O(n)$.

Example
To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires $O(nnz(A) + nnz(B))$ where $nnz(X)$ = number of nonzero elements of a matrix X.

remark
A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).
Sparse Matrices

- So how do we store A?
- Fast mat-vec is certainly important; also ask
 - what type of access (rows, cols, diag, etc)?
 - dynamic allocation?
 - transpose needed?
 - inherent structure?
- Even data structures for dense storage not as obvious
- Sparse operations have low operation/memory reference ratio
Popular Storage Structures

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>Dense</td>
</tr>
<tr>
<td>BND</td>
<td>Linpack Banded</td>
</tr>
<tr>
<td>COO</td>
<td>Coordinate</td>
</tr>
<tr>
<td>CSR</td>
<td>Compressed Sparse Row</td>
</tr>
<tr>
<td>CSC</td>
<td>Compressed Sparse Column</td>
</tr>
<tr>
<td>MSR</td>
<td>Modified CSR</td>
</tr>
<tr>
<td>LIL</td>
<td>Linked List</td>
</tr>
<tr>
<td>ELL</td>
<td>Ellpack-Itpack</td>
</tr>
<tr>
<td>DIA</td>
<td>Diagonal</td>
</tr>
<tr>
<td>BSR</td>
<td>Block Sparse Row</td>
</tr>
<tr>
<td>SSK</td>
<td>Symmetric Skyline</td>
</tr>
<tr>
<td>BSR</td>
<td>Nonsymmetric Skyline</td>
</tr>
<tr>
<td>JAD</td>
<td>Jagged Diagonal</td>
</tr>
</tbody>
</table>

Note: CSR = CRS, CCS = CSC, SSK = SKS in some references

We will focus on COO and CSR!
Some types of matrices (including graph matrices) contain many zeros. Storing all those zero entries is wasteful. How can we store them so that we avoid storing tons of zeros?

- Python dictionaries (easy, but not efficient)
- Using arrays...?
How can we store a sparse matrix using just arrays? For example:

\[
\begin{pmatrix}
0 & 2 & 0 & 3 \\
1 & 4 & & \\
& & 5 & \\
6 & 7 & \\
\end{pmatrix}
\]

Idea: ‘Compressed Sparse Row’ (‘CSR’) format

- Write all non-zero *values* from top-left to bottom-right
- Write down what *column* each value was in
- Write down the index where each *row started*
RowStarts = \begin{pmatrix} 0 & 2 & 4 & 5 & 7 \end{pmatrix} \quad \text{(zero-based)}

Columns = \begin{pmatrix} 1 & 3 & 0 & 1 & 2 & 0 & 3 \end{pmatrix} \quad \text{(zero-based)}

Values = \begin{pmatrix} 2 & 3 & 1 & 4 & 5 & 6 & 7 \end{pmatrix}
$A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
4.0 & 5.0 & 6.0 \\
7.0 & 8.0 & 9.0
\end{bmatrix}$

$AA = \begin{bmatrix}
3 & 3 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0
\end{bmatrix}$

- simple
- row-wise
- easy blocked formats
COO

\[A = \begin{bmatrix}
1 & 0 & 0 & 2 & 0 \\
3 & 4 & 0 & 5 & 0 \\
6 & 0 & 7 & 8 & 9 \\
0 & 0 & 10 & 11 & 0 \\
0 & 0 & 0 & 0 & 12 \\
\end{bmatrix} \]

\[
data = [12.0, 9.0, 7.0, 5.0, 1.0, 2.0, 11.0, 3.0, 6.0, 4.0, 8.0, 10.0]
\]

\[
row = [4, 2, 2, 1, 0, 0, 3, 1, 2, 1, 2, 3]
\]

\[
col = [4, 4, 2, 3, 0, 3, 3, 0, 0, 1, 3, 2]
\]

- simple, often used for entry
CSR

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 3 & 4 & 0 & 5 & 0 \\ 6 & 0 & 7 & 8 & 9 \\ 0 & 0 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 12 \end{bmatrix}$$

\[data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0] \]
\[col = [0, 3, 0, 1, 3, 0, 2, 3, 4, 2, 3, 4] \]
\[rowptr = [0, 2, 5, 9, 11, 12] \]

- Length of \(data \) and \(col \) is \(nnz \); length of \(rowptr \) is \(n + 1 \)
- \(rowptr(j) \) gives the index (offset) to the beginning of row \(j \) in \(data \) and \(col \) (\(+1\) due to origin in Fortran)
- no structure, fast row access, slow column access
- related: CSC, Compressed Sparse Column
Sparse Matrix-Vector Multiply

\[z = Ax, \ A_{m \times n}, \ x_{n \times 1}, \ z_{m \times 1} \]

Input: \(A, x \)
\(z = 0 \)

for \(i = 0 \) to \(m - 1 \)
 for \(\text{col} = A(i,:) \)
 \[z(i) = z(i) + A(i,\text{col})x(\text{col}) \]
 end
end

- \(O(\text{nnz}) \)
- marches down the rows
- very cheap