


Outline

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States

Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation



Outline

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States

Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation



Some Perspective

I We have so far (mostly) looked at what we can do with single
numbers (and functions that return single numbers).

I Things can get much more interesting once we allow not just
one, but many numbers together.

I It is natural to view an array of numbers as one object with its
own rules.
The simplest such set of rules is that of a vector.

I A 2D array of numbers can also be looked at as a matrix.

I So it’s natural to use the tools of computational linear algebra.

I ‘Vector’ and ‘matrix’ are just representations that come to life
in many (many!) applications. The purpose of this section is to
explore some of those applications.



Vectors

What’s a vector?

An array that defines addition and scalar multiplication with
reasonable rules such as

u + (v + w) = (u + v) + w

v + w = w + v

α(u + v) = αu + αv

These axioms generally follow from properties of “+” and “·”
operators



Vectors from a CS Perspective

What would the concept of a vector look like in a programming
language (e.g. Java)?

In a sense, ‘vector’ is an abstract interface, like this:

interface Vector

{

Vector add(Vector x, Vector y);

Vector scale(Number alpha, Vector x);

}

(Along with guarantees that add and multiply interact
appropriately.)



Vectors in the ‘Real World’

Demo: Images as Vectors (click to visit)
Demo: Sounds as Vectors (click to visit)
Demo: Shapes as Vectors (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_vec/Images as Vectors.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_vec/Sounds as Vectors.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_vec/Shapes as Vectors.html
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Matrices

What does a matrix do?

It represents a linear function between two vector spaces f : U → V
in terms of bases u1, . . . ,un of U and v1, . . . ,vm of V . Let

u = α1u1 + · · ·+ αnun

and

v = β1v1 + · · ·+ βmvm.

Then f can always be represented as a matrix that obtains the βs
from the αs: a11 · · · a1n

...
. . .

...
am1 · · · amn


 α1

...
αn

 =

 β1
...
βm

 .



Example: The ‘Frequency Shift’ Matrix

Assume both u and v are linear combination of sounds of different
frequencies:

u = α1u110 Hz + α2u220 Hz + · · ·+ α4u880 Hz

(analogously for v, but with βs). What matrix realizes a ‘frequency
doubling’ of a signal represented this way?


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




α1

α2

α3

α4

 =


β1

β2

β3

β4





Matrices in the ‘Real World’

What are some examples of matrices in applications?

Demo: Matrices for geometry transformation (click to visit)
Demo: Matrices for image blurring (click to visit)
In-class activity: Computational Linear Algebra

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_mat/Matrices for geometry transformation.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_mat/Matrices for image blurring.html


Outline

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU
Repeating Linear Operations:
Eigenvalues and Steady States

Eigenvalues: Applications

Approximate Undo: SVD and Least
Squares

SVD: Applications
Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition Numbers
Low-Rank Approximation



Graphs as Matrices

How could this (directed) graph be written as a matrix?

0 1 4

2 3


1 1 0 0 0
1 1
1 1 1

1
1 1





Matrices for Graph Traversal: Technicalities

What is the general rule for turning a graph into a matrix?

If there is an edge from node i to node j, then Aji = 1.
(otherwise zero)

What does the matrix for an undirected graph look like?

Symmetric.

How could we turn a weighted graph (i.e. one where the edges
have weights–maybe ‘pipe widths’) into a matrix?

Allow values other than zero and one for the entries of the matrix.



Graph Matrices and Matrix-Vector Multiplication

If we multiply a graph matrix by the ith unit vector, what happens?

0 1 4

2 3


1 1 0 0 0
1 1
1 1 1

1
1 1




1
0
0
0
0

 =


1
1
1
0
1

 .



Graph Matrices and Matrix-Vector Multiplication (II)

We get a vector that indicates (with a 1) all the nodes that are
reachable from node i.



Demo: Matrices for graph traversal (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_graph/Matrices for graph traversal.html


Markov chains

Consider the following graph of states:

Surf the web

Study

Eat

Suppose this is an accurate model of the behavior of the average
student. :) Can this be described using a matrix?



Markov chains (II)

Important assumption: Only the most recent state matters to
determine probability of next state. This is called the Markov
property, and the model is called a Markov chain.

Write transition probabilities into matrix as before:
(Order: surf, study, eat–‘from’ state along columns)

A =

 .8 .6 .8
.2 .3 0
0 .1 .2


Observe: Columns add up to 1, to give sensible probability
distribution of next states. Given probabilities of states
p = (psurf , pstudy, peat), Ap gives us the probabilities after one unit
of time has passed.
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Storing Sparse Matrices

Some types of matrices (including graph matrices) contain many
zeros.
Storing all those zero entries is wasteful.
How can we store them so that we avoid storing tons of zeros?

I Python dictionaries (easy, but not efficient)

I Using arrays...?



Storing Sparse Matrices Using Arrays

How can we store a sparse matrix using just arrays? For example:
0 2 0 3
1 4

5
6 7


Idea: ‘Compressed Sparse Row’ (‘CSR’) format

I Write all non-zero values from top-left to bottom-right

I Write down what column each value was in

I Write down the index where each row started

RowStarts =
(

0 2 4 5 7
)

(zero-based)

Columns =
(

1 3 0 1 2 0 3
)

(zero-based)

Values =
(

2 3 1 4 5 6 7
)



Demo: Sparse Matrices in CSR Format (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/model_sparse/Sparse Matrices in CSR Format.html
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Norms

What’s a norm?

I A generalization of ‘absolute value’ to vectors.

I f(x) : Rn → R+
0 , returns a ‘magnitude’ of the input vector

I In symbols: Often written ‖x‖.

Define norm.

A function ‖x‖ : Rn → R+
0 is called a norm if and only if

1. ‖x‖ > 0⇔ x 6= 0.

2. ‖γx‖ = |γ| ‖x‖ for all scalars γ.

3. Obeys triangle inequality ‖x+ y‖ 6 ‖x‖+ ‖y‖



Examples of Norms

What are some examples of norms?

The so-called p-norms:∥∥∥∥∥∥
 x1

xn

∥∥∥∥∥∥
p

= p

√
|x1|p + · · ·+ |xn|p (p > 1)

p = 1, 2,∞ particularly important



Demo: Vector Norms (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Vector Norms.html


Norms and Errors

If we’re computing a vector result, the error is a vector.
That’s not a very useful answer to ‘how big is the error’.
What can we do?

Apply a norm!

How? Attempt 1:

Magnitude of error 6= ‖true value‖−‖approximate value‖ WRONG!

Attempt 2:

Magnitude of error = ‖true value− approximate value‖



Absolute and Relative Error
What are the absolute and relative errors in approximating the
location of Siebel center (40.114,−88.224) as (40,−88) using the
2-norm?

(
40.114
−88.224

)
−
(

40
−88

)
=

(
0.114
−.224

)
Absolute magnitude;∥∥∥∥( 40.114

−88.224

)∥∥∥∥
2

≈ 96.91

Absolute error: ∥∥∥∥( 0.114
−.224

)∥∥∥∥
2

≈ .2513

Relative error:
.2513

96.91
≈ .00259.

But: Is the 2-norm really the right norm here?



Demo: Calculate geographic distances using
http://tripstance.com

I Siebel Center is at 40.113813,-88.224671. (latitude, longitude)

I Locations in that format are accepted in the location boxes.

I What’s the distance to the nearest integer lat/lon intersection,
40,-88?

I How does distance relate to lat/lon? Only lat? Only lon?

http://tripstance.com


Matrix Norms

What norms would we apply to matrices?

I Easy answer: ‘Flatten’ matrix as vector, use vector norm.
This corresponds to an entrywise matrix norm called the
Frobenius norm,

‖A‖F :=

√∑
i,j

a2
ij .

I However, interpreting matrices as linear functions, what we are
really interested in is the maximum amplification of the norm
of any vector multiplied by the matrix,

‖A‖ := max
‖x‖=1

‖Ax‖ .

These are called induced matrix norms, as each is associated
with a specific vector norm ‖·‖.



Matrix Norms (II)

I The following are equivalent:

max
‖x‖6=0

‖Ax‖
‖x‖

= max
‖x‖6=0

∥∥∥∥∥∥∥∥∥A
x

‖x‖︸︷︷︸
y

∥∥∥∥∥∥∥∥∥
‖y‖=1

= max
‖y‖=1

‖Ay‖ = ‖A‖ .

I Logically, for each vector norm, we get a different matrix norm,
so that, e.g. for the vector 2-norm ‖x‖2 we get a matrix
2-norm ‖A‖2, and for the vector ∞-norm ‖x‖∞ we get a
matrix ∞-norm ‖A‖∞.



Demo: Matrix norms (click to visit)
In-class activity: Matrix norms

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Matrix norms.html


Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

1. ‖A‖ > 0⇔ A 6= 0.

2. ‖γA‖ = |γ| ‖A‖ for all scalars γ.

3. Obeys triangle inequality ‖A+B‖ 6 ‖A‖+ ‖B‖

But also some more properties that stem from our definition:

1. ‖Ax‖ 6 ‖A‖ ‖x‖
2. ‖AB‖ 6 ‖A‖ ‖B‖ (easy consequence)

Both of these are called submultiplicativity of the matrix norm.



Example: Orthogonal Matrices

What is the 2-norm of an orthogonal matrix?

Linear Algebra recap: For an orthogonal matrix A, A−1 = AT .

In other words: AAT = ATA = I.
Next:

‖A‖2 = max
‖x‖2=1

‖Ax‖2

where

‖Ax‖2 =
√

(Ax)T (Ax) =
√
xT (ATA)x =

√
xTx = ‖x‖2 ,

so ‖A‖2 = 1.



Conditioning

Now, let’s study condition number of solving a linear system

Ax = b.

Input: b with error ∆b,
Output: x with error ∆x.

Observe A(x+ ∆x) = (b+ ∆b), so A∆x = ∆b.

rel err. in output

rel err. in input
=
‖∆x‖ / ‖x‖
‖∆b‖ / ‖b‖

=
‖∆x‖ ‖b‖
‖∆b‖ ‖x‖

=

∥∥A−1∆b
∥∥ ‖Ax‖

‖∆b‖ ‖x‖

6
∥∥A−1

∥∥ ‖A‖ ‖∆b‖ ‖x‖
‖∆b‖ ‖x‖

=
∥∥A−1

∥∥ ‖A‖ .



Conditioning (II)

So we’ve found an upper bound on the condition number. With a
little bit of fiddling, it’s not too hard to find examples that achieve
this bound, i.e. that it is tight.

So we’ve found the condition number of linear system solving, also
called the condition number of the matrix A:

cond(A) = κ(A) = ‖A‖
∥∥A−1

∥∥ .
I cond is relative to a given norm. So, to be precise, use

cond2 or cond∞ .

I If A−1 does not exist: cond(A) =∞ by convention.



Demo: Condition number visualized (click to visit)
Demo: Conditioning of 2x2 Matrices (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Condition number visualized.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/norm/Conditioning of 2x2 Matrices.html


More Properties of the Condition Number

What is cond(A−1)?

cond(A−1) = ‖A‖ ·
∥∥A−1

∥∥ = cond(A).

What is the condition number of applying the matrix-vector multi-
plication Ax = b? (I.e. now x is the input and b is the output)

Let B = A−1.
Then computing b = Ax is equivalent to solving Bb = x.
Solving Bb = x has condition number
cond(B) = cond(A−1) = cond(A).

So the operation ‘multiply a vector by matrix A’ has the same
condition number as ‘solve a linear system with matrix A’.



Matrices with Great Conditioning (Part 1)

Give an example of a matrix that is very well-conditioned.
(I.e. has a condition-number that’s good for computation.)
What is the best possible condition number of a matrix?

Small condition numbers mean not a lot of error amplification.
Small condition numbers are good.

The identity matrix I should be well-conditioned:

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1.

It turns out that this is the smallest possible condition number:

1 = ‖I‖ =
∥∥A ·A−1

∥∥ 6 ‖A‖ ·
∥∥A−1

∥∥ = κ(A).

Both of these are true for any norm ‖·‖.



Matrices with Great Conditioning (Part 2)

What is the 2-norm condition number of an orthogonal matrix A?

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2

= ‖A‖2
∥∥AT∥∥

2
= 1.

That means orthogonal matrices have optimal conditioning.
They’re very well-behaved in computation.



In-class activity: Matrix Conditioning
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Solving Systems of Equations

Want methods/algorithms to solve linear systems. Starting small,
a kind of system that’s easy to solve has a ... matrix.

‘Triangular’ → Easy to solve by hand, e.g. given

b1 = a11x1 + a12x2

b2 = a22x2

just substitute x2 = b2/a22 into the first equation.
Generally written as upper/lower triangular matrices.



Triangular Matrices

Solve 
a11 a12 a13 a14

a22 a23 a24

a33 a34

a44




x1

x2

x3

x4

 =


b1
b2
b3
b4

 .

I Solve for x4 in a44x4 = b4, so x4 = b4/a44.

I Then solve (recurse) a11 a12 a13

a22 a23

a33

 x1

x2

x3

 =

 b1 − a14x4

b2 − a24x4

b3 − a34x4

 .

I This process is called back-substitution.

I The analogous process for lower triangular matrices is called
forward-substitution.



Demo: Coding back-substitution (click to visit)
In-class activity: Forward-substitution

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/linsys/Coding back-substitution.html


General Matrices

What about non-triangular matrices?

Perform Gaussian Elimination, also known as LU factorization

Given n× n matrix A, obtain lower triangular matrix L and upper
triangular matrix U such that A = LU .

Is there some redundancy in this representation?

Yes, the number of entries in a triangular matrix is (n+ 1)n2 >
n2

2 .
So, by convention we constrain L to have unit diagonal, so Lii = 1
for all i. Then we have n2 nontrivial values in L,U .



Using LU Decomposition to Solve Linear Systems

Given A = LU , how do we solve Ax = b?

Ax = b

L Ux︸︷︷︸
y

= b

Ly = b ← solvable by fwd. subst.

Ux = y ← solvable by bwd. subst.

Now x is a solution to Ax = b.



2-by-2 LU Factorization (Gaussian Elimination)

Lets consider an example for n = 2.

A =

[
a11 a12

a21 a22

]
=

[
1 0
l21 1

]
·
[
u11 u12

0 u22

]
First, we can observe[

a11 a12

]
= 1 ·

[
u11 u12

]
,

so the first row of U is just the first row of A.

Second, we notice a21 = l21 · u11, so l21 = a21/u11.

Lastly, we just need to get u22, which participates in the final
equation,

a22 = l21 · u12 + 1 · u22

thus we are left with u22 = a22 − l21u12.



General LU Factorization (Gaussian Elimination)

A =

[
a11 a12

a21 A22

]
=

[
1 0

l21 L22

]
·
[
u11 u12

0 U22

]
First, we can observe[

a11 a12

]
= 1 ·

[
u11 u12

]
,

so the first row of U is just the first row of A.

Second, we notice a21 = l21 · u11, so l21 = a21/u11.

To get L22 and U22, we use the equation,

A22 = l21 · u12 + L22 · U22.

To solve, perform the Schur complement update and ‘recurse’,

[L22, U22] = LU-decomposition(A22 − l21 · u12︸ ︷︷ ︸
Schur complement

)



Demo: Vanilla Gaussian Elimination (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/linsys/Vanilla Gaussian Elimination.html


LU: Failure Cases?

Is LU/Gaussian Elimination bulletproof?

No, the process can break, try performing LU on A =

(
0 1
2 1

)
.

Q: Is this a problem with the process or with the entire idea of LU?(
0 1
2 1

)
=

(
1 0
`21 1

)(
u11 u12

0 u22

)
We observe that(

1
`21 1

)(
u11 u12

0 u22

)
=

(
0 1
2 1

)
→ u11 = 0

and yet simultaneously u11 · `21︸ ︷︷ ︸
0

+1 · 0 = 2

It turns out to be that A doesn’t have an LU factorization.



LU: Failure Cases? (II)

What can be done to get something like an LU factorization?

Idea: In Gaussian elimination: simply swap rows, equivalent linear
system.

Approach:

I Good Idea: Swap rows if there’s a zero in the way

I Even better Idea: Find the largest entry (by absolute value),
swap it to the top row.

The entry we divide by is called the pivot.
Swapping rows to get a bigger pivot is called (partial) pivoting.



Partial Pivoting Example
Lets try to get a pivoted LU factorization of the matrix

A =

(
0 1
2 1

)
.

Start by swapping the two rows

Ā = PA =

[
2 1
0 1

]
.

P is a permutation matrix,

P =

[
0 1
1 0

]
.

Now proceed as usual with the Gaussian elimination on Ā,

Ā =

[
1 0
0 1

]
︸ ︷︷ ︸

L

[
2 1
0 1

]
︸ ︷︷ ︸

U

.



Partial Pivoting Example (II)

Thus, we obtained a pivoted LU factorization,

PA = LU.

Written differently, we have

A = P TLU.

To solve a linear system Ax = b, it suffices to compute

x = U−1︸︷︷︸
bwd. subs.

· L−1︸︷︷︸
fwd. subs.

· P︸︷︷︸
permute

· b.



Permutation Matrices

How do we capture ‘row swaps’ in a factorization?


1

1
1

1


︸ ︷︷ ︸

P


A A A A
B B B B
C C C C
D D D D

 =


A A A A
C C C C
B B B B
D D D D

 .

P is called a permutation matrix.

Q: What’s P−1?



General LU Partial Pivoting

What does the overall process look like?

1. pivot row with largest leading entry to top,

Ā = P1A =

[
ā11 ā12

ā21 Ā22

]
2. the top row of Ā is the top row of U

3. compute l̄21 by dividing ā21 by ā11

4. perform Schur complement update and recurse, get

P̄ (Ā22 − l̄21u12) = L22U22

5. permute the first column of L, l21 = P̄ l̄21

6. combine permutations P =

[
1

P̄

]
P1, so PA = LU



Computational Cost

What is the computational cost of multiplying two n×n matrices?

O(n3)

More precisely, we have n accumulated outer products with n2

additions and multiplications, so to leading order the cost is 2n3.

What is the computational cost of carrying out LU factorization
on an n× n matrix?

O(n) cost to form l21

O(n2) to perform Schur complement update l21u12

Overall O(n3) since we continue for n steps

More precisely, we have n outer products of decreasing size,

n∑
i=1

2i2 ≈ 2n3/3.



More cost concerns

What’s the cost of solving Ax = b?

LU: O(n3)
FW/BW Subst: 2×O(n2) = O(n2)

What’s the cost of solving Ax1 = b1, . . . , Axn = bn?

LU: O(n3)
FW/BW Subst: 2n×O(n2) = O(n3)

What’s the cost of finding A−1?

Same as solving

AX = I,

so still O(n3).



Cost: Worrying about the Constant, BLAS
O(n3) really means

α · n3 + β · n2 + γ · n+ δ.

All the non-leading and constants terms swept under the rug. But:
at least the leading constant ultimately matters.

Getting that constant to be small is surprisingly hard, even for
something deceptively simple such as matrix-matrix multiplication.

Idea: Rely on library implementation: BLAS (Fortran)
Level 1 z = αx+ y vector-vector operations

O(n)
?axpy

Level 2 z = Ax+ y matrix-vector operations
O(n2)
?gemv

Level 3 C = AB + βC matrix-matrix operations
O(n3)
?gemm



Cost: Worrying about the Constant, BLAS (II)

LAPACK: Implements ‘higher-end’ things (such as LU) using BLAS
Special matrix formats can also help save const significantly, e.g.

I banded

I sparse



LU: Rectangular Matrices

Can we compute LU of an m× n rectangular matrix?

Yes, two cases:

I m > n (tall and skinny): L : m× n, U : n× n
I m < n (short and fat): L : m×m, U : m× n
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Eigenvalue Problems: Setup/Math Recap

A is an n× n matrix.

I x 6= 0 is called an eigenvector of A if there exists a λ so that

Ax = λx.

I In that case, λ is called an eigenvalue.

I By this definition if x is an eigenvector then so is αx, therefore
we will usually seek normalized eigenvectors, so ‖x‖2 = 1.



Finding Eigenvalues

How do you find eigenvalues?

Linear Algebra approach:

Ax = λx

⇔ (A− λI)x = 0

⇔ A− λI is singular

⇔ det(A− λI) = 0

det(A− λI) is called the characteristic polynomial, which has
degree n, and therefore n (potentially complex) roots.

Q: Does that help computationally?
A: Abel showed that for n > 5 there is no general formula for the
roots of the polynomial. (i.e. no analog to the quadratic formula for
n = 5)



Finding Eigenvalues (II)

Algorithmically, that means we will need to approximate. So far
(e.g. for LU and QR), if it had not been for FP error, we would
have obtained exact answers. For eigenvalue problems, that is no
longer true–we can only hope for an approximate answer.



Distinguishing eigenvectors

Assume we have normalized eigenvectors x1, . . . ,xn with eigen-
values |λ1| > |λ2| > · · · > |λn|. Show that the eigenvectors are
linearly-independent.

We’d like to show that if

0 = α1x1 + · · ·+ αnxn

each αi = 0. Intuitively, we can see that if we multiply the
expression by A, the x1 component would grow faster than others:

lim
k→∞

‖(1/λk1)Ak(α1x1 + · · ·+ αnxn)‖ = α1 = 0.

We can then apply the same argument for α2, etc.



Diagonalizability

If we have n eigenvectors with different eigenvalues, the matrix is
diagonalizable.

Define a matrix whose columns are the eigenvectors

X =

 | |
x1 · · · xn
| |

 ,

and observe

AX =

 | |
λ1x1 · · · λnxn
| |

 =

 | |
x1 · · · xn
| |


 λ1

. . .

λn


This corresponds to a similarity transform

AX = XD ⇔ A = XDX−1,



Diagonalizability (II)

where D is a diagonal matrix with the eigenvalues.

In that sense: “Diagonalizable” = “Similar to a diagonal matrix”.



Are all Matrices Diagonalizable?

Give characteristic polynomial, eigenvalues, eigenvectors of(
1 1

1

)
.

CP: (1− λ)2

Eigenvalues: 1 (with multiplicity 2)
Eigenvectors: (

1 1
1

)(
x
y

)
=

(
x
y

)
⇒ x+ y = x⇒ y = 0. So all eigenvectors must look like

(
x
0

)
.

Eigenvector matrix X won’t be invertible. → This matrix is not
diagonalizable!



Power Iteration

We can use linear-independence to find the eigenvector with the
largest eigenvalue. Consider the eigenvalues of A1000.

Now, define for example x = αx1 + βx2, so

y = A1000(αx1 + βx2) = αλ1000
1 x1 + βλ1000

2 x2

and observe

y

λ1000
1

= αx1 + β

 λ2

λ1︸︷︷︸
<1


1000

︸ ︷︷ ︸
�1

x2.

Idea: Use this as a computational procedure to find x1.
Called Power Iteration.



Power Iteration: Issues?

What could go wrong with Power Iteration?

I Starting vector has no component along x1

Not a problem in practice: Rounding will introduce one.

I Overflow in computing λ1000
1

→ Normalized Power Iteration

I λ1 = λ2

Real problem.



What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to
know eigenvalues?

Estimate them:
xTAx

xTx

I = λ if x is an eigenvector w/ eigenvalue λ

I Otherwise, an estimate of a ‘nearby’ eigenvalue

This is called the Rayleigh quotient.



Convergence of Power Iteration

What can you say about the convergence of the power method?

Say v
(k)
1 is the kth estimate of the eigenvector x1, and

ek =
∥∥∥x1 − v(k)

1

∥∥∥ .
Easy to see:

ek+1 ≈
|λ2|
|λ1|

ek.

We will later learn that this is linear convergence. It’s quite slow.

What does a shift do to this situation?

ek+1 ≈
|λ2 − σ|
|λ1 − σ|

ek.

Picking σ ≈ λ1 does not help...

Idea: Invert and shift to bring |λ1 − σ| into numerator.



Transforming Eigenvalue Problems

Suppose we know that Ax = λx. What are the eigenvalues of these
changed matrices?

Power. A→ Ak

Akx = λkx

Shift. A→ A− σI

(A− σI)x = (λ− σ)x

Inversion. A→ A−1

A−1x = λ−1x



Inverse Iteration / Rayleigh Quotient Iteration
Describe inverse iteration.

xk+1 := (A− σI)−1xk

I Implemented by storing/solving with LU factorization

I Converges to eigenvector for eigenvalue closest to σ, with

ek+1 ≈
|λclosest − σ|

|λsecond-closest − σ|
ek.

Describe Rayleigh Quotient Iteration.

Compute σk = xTkAxk/x
T
k xk to be the Rayleigh quotient for xk.

xk+1 := (A− σkI)−1xk



Demo: Power iteration and its Variants (click to visit)
In-class activity: Eigenvalue Iterations

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/eigen/Power iteration and its Variants.html


Computing Multiple Eigenvalues

All Power Iteration Methods compute one eigenvalue at a time.
What if I want all eigenvalues?

Two ideas:

1. Deflation: Suppose Av = λv (v 6= 0). Let V = span{v}.
Then

A : V → V

V ⊥ → V ⊕ V ⊥

In matrix form

A =

 |
v Basis of V ⊥

|


︸ ︷︷ ︸

Q1


λ ∗ ∗ ∗
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

QT1 .



Computing Multiple Eigenvalues (II)

Now call B the shaded part of the resulting matrix

eigenvalues of A = eigenvalues of B ∪ {λ}.

I.e. we’ve reduced the rest of the problem to finding the
eigenvalues of B–which is smaller → We have shrunk the
problem size, or ‘deflated’ the problem.

2. Iterate with multiple vectors simultaneously.



Simultaneous Iteration

What happens if we carry out power iteration on multiple vectors
simultaneously?

Simultaneous Iteration:

1. Start with X0 ∈ Rn×p (p 6 n) with (arbitrary) iteration
vectors in columns

2. Xk+1 = AXk

Problems:

I Needs rescaling

I X increasingly ill-conditioned: all columns go towards x1

Fix: orthogonalize! (using, e.g. Gram-Schmidt)
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Markov chains and Eigenvalue Problems

Recall our example of a Markov chain:

Surf the web

Study

Eat

Suppose this is an accurate model of the behavior of the average
student. :) How likely are we to find the average student in each
of these states?

Write transition probabilities into matrix as before:



Markov chains and Eigenvalue Problems (II)

(Order: surf, study, eat–‘from’ state along columns)

A =

 .8 .6 .8
.2 .3 0
0 .1 .2


Recall: Columns add up to 1. Given probabilities of states
p = (psurf , pstudy, peat), Ap gives us the probabilities after one unit
of time has passed.

Idea: Look for a steady state, i.e. Ap = p.

Phrase as an eigenvalue problem: Ap = λp.



Demo: Finding an equilibrium distribution using the power method
(click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/eigen_app/Finding an equilibrium distribution using the power method.html


Understanding Time Behavior

Many important systems in nature are modeled by describing the
time rate of change of something.

I E.g. every bird will have 0.2 baby birds on average per year.

I But there are also foxes that eat birds. Every fox present
decreases the bird population by 1 birds a year.
Meanwhile, each fox has 0.3 fox babies a year. And for each
bird present, the population of foxes grows by 0.9 foxes.

Set this up as equations and see if eigenvalues can help us under-
stand how these populations will evolve over time.

Equation just for birds:

d

dt
b = 0.2b.



Understanding Time Behavior (II)
Equations for birds and foxes:

d

dt
b = 0.2b− 1f,

d

dt
f = 0.9b+ .3f.

Shorter, letting the population p =
(
b f

)T
:

d

dt
p =

(
0.2 −1
0.9 .3

)
p.

Bold (but pretty good) assumpution:

p(t) = eλtp0.

Then:

λp0 =

(
0.2 −1
0.9 .3

)
p0.

So, the eigenvalues of the transition matrix can tell us how the
system will evolve over time.



Demo: Understanding the birds and the foxes with eigenvalues
(click to visit)
In-class activity: Eigenvalues 2

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/eigen_app/Understanding the birds and the foxes with eigenvalues.html
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Singular Value Decomposition

What is the Singular Value Decomposition (‘SVD’)?

The SVD is a factorization of an m× n matrix into

A = UΣV T , where

I U is an m×m orthogonal matrix
(Its columns are called ‘left singular vectors’.)

I Σ is an m× n diagonal matrix
with the singular values on the diagonal

Σ =


σ1

. . .

σn
0

 Convention: σ1 > σ2 > · · · > σn > 0.

I V T is an n× n orthogonal matrix
(V ’s columns are called ‘right singular vectors’.)



Computing the SVD

How can I compute an SVD of a matrix A?

1. Compute the eigenvalues and eigenvectors of ATA.

ATAv1 = λ1v1 · · · ATAvn = λnvn

2. Make a matrix V from the vectors vi:

V =

 | |
v1 · · · vn
| |

 .

(ATA symmetric: V orthogonal if columns have norm 1.)



Computing the SVD (II)

3. Make a diagonal matrix Σ from the square roots of the
eigenvalues:

Σ =


√
λ1

. . . √
λn 0


4. Find U from

A = UΣV T ⇔ UΣ = AV.

(While being careful about non-squareness and zero singular
values)
In the simplest case:

U = AV Σ−1.



Computing the SVD (III)

Observe U is orthogonal: (Use: V TATAV = Σ2)

UTU = Σ−1 V TATAV︸ ︷︷ ︸
Σ2

Σ−1 = Σ−1Σ2Σ−1 = I.

(Similar for UUT .)



Demo: Computing the SVD (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd/Computing the SVD.html


How Expensive is it to Compute the SVD?

Demo: Relative cost of matrix factorizations (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd/Relative cost of matrix factorizations.html


‘Reduced’ SVD

Is there a ‘reduced’ factorization for non-square matrices?

Yes:



‘Reduced’ SVD (II)

I “Full” version shown in black

I “Reduced” version shown in red
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Solve Square Linear Systems

Can the SVD A = UΣV T be used to solve square linear systems?
At what cost (once the SVD is known)?

Yes, easy:

Ax = b

UΣV Tx = b

ΣV Tx︸ ︷︷︸
y:=

= UTb

(diagonal, easy to solve) Σy = UTb

Know y, find x = V y.

Cost: O(n2)–but more operations than using fw/bw subst. Even
worse when including comparison of LU vs. SVD.



Tall and Skinny Systems

Consider a ‘tall and skinny’ linear system, i.e. one that has more
equations than unknowns:

In the figure: m > n. How could we solve that?

First realization: A square linear system often only has a single
solution. So applying more conditions to the solution will mean we
have no exact solution.

Ax = b ← Not going to happen.



Tall and Skinny Systems (II)

Instead: Find x so that ‖Ax− b‖2 is as small as possible.

r = Ax− b is called the residual of the problem.

‖Ax− b‖22 = r2
1 + · · ·+ r2

m ← squares

This is called a (linear) least-squares problem. Since

Find x so that ‖Ax− b‖2 is as small as possible.

is too long to write every time, we introduce a shorter notation:

Ax ∼= b.



Solving Least-Squares

How can I actually solve a least-squares problem Ax ∼= b?

The job: Make ‖Ax− b‖2 is as small as possible.
Equivalent: Make ‖Ax− b‖22 is as small as possible.
Use: The SVD A = UΣV T .

Find x to minimize:

‖Ax− b‖22
=

∥∥UΣV Tx− b
∥∥2

2

=
∥∥UT (UΣV Tx− b)

∥∥2

2
(because U is orthogonal)

=

∥∥∥∥∥∥ΣV Tx︸︷︷ ︸
y

−UTb

∥∥∥∥∥∥
2

2

=
∥∥Σy − UTb

∥∥2

2



Solving Least-Squares (II)

What y minimizes

∥∥Σy − UTb
∥∥2

2
=

∥∥∥∥∥∥∥∥∥∥∥


σ1

. . .

σk
0

0

y − z
∥∥∥∥∥∥∥∥∥∥∥

2

2

?

Pick

yi =

{
zi/σi if σi 6= 0,
0 if σi = 0.

Find x = V y, done.

Slight technicality: There only is a choice if some of the σi are
zero. (Otherwise y is uniquely determined.) If there is a choice, this
y is the one with the smallest 2-norm that also minimizes the
2-norm of the residual. And since ‖x‖2 = ‖y‖2 (because V is



Solving Least-Squares (III)

orthogonal), x also has the smallest 2-norm of all x′ for which
‖Ax′ − b‖2 is minimal.



In-class activity: SVD and Least Squares



The Pseudoinverse: A Shortcut for Least Squares

How could the solution process for Ax ∼= b be with an SVDA =
UΣV T be ‘packaged up’?

UΣV Tx ≈ b

⇔ x ≈ V Σ−1UTb

Problem: Σ may not be invertible.
Idea 1: Define a ‘pseudo-inverse’ Σ+ of a diagonal matrix Σ as

Σ+
i =

{
σ−1
i if σi 6= 0,

0 if σi = 0.

Then Ax ∼= b is solved by V Σ+UTb.

Idea 2: Call A+ = V Σ+UT the pseudo-inverse of A.
Then Ax ∼= b is solved by A+b.



The Normal Equations

You may have learned the ‘normal equations’ ATAx = ATb to
solve Ax ∼= b.
Why not use those?

cond(ATA) ≈ cond(A)2

I.e. if A is even somewhat poorly conditioned, then the conditioning
of ATA will be a disaster.

The normal equations are not well-behaved numerically.
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Fitting a Model to Data

How can I fit a model to measurements? E.g.:

Number of days in polar vortex

Mood

Time t

m

Maybe:

m̂(t) = α+ βt+ γt2

Have: 300 data pooints: (t1,m1), . . . , (t300,m300)
Want: 3 unknowns α, β, γ



Fitting a Model to Data (II)

Write down equations:

α+ βt1 + γt21 ≈ m1

α+ βt2 + γt22 ≈ m2
...

...
...

α+ βt300 + γt2300 ≈ m300

→


1 t1 t21
1 t2 t22
...

...
...

1 t300 t2300


 α

β
γ

 ∼=


m1

m2
...

m300

 .

So data fitting is just like interpolation, with a Vandermonde matrix:

Vα = m.

Only difference: More rows. Solvable using the SVD.



Demo: Data Fitting with Least Squares (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd_app/Data Fitting with Least Squares.html
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Meaning of the Singular Values

What do the singular values mean? (in particular the first/largest
one)

A = UΣV T

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

∥∥UΣV Tx
∥∥

2

U orth.
= max

‖x‖2=1

∥∥ΣV Tx
∥∥

2

V orth.
= max

‖V Tx‖2=1

∥∥ΣV Tx
∥∥

2

Let y = V Tx
= max

‖y‖2=1
‖Σy‖2

Σ diag.
= σ1.

So the SVD (finally) provides a way to find the 2-norm.

Entertainingly, it does so by reducing the problem to finding the
2-norm of a diagonal matrix.

‖A‖2 = σ1.



Condition Numbers

How would you compute a 2-norm condition number?

cond2(A) = ‖A‖2
∥∥A−1

∥∥
2

= σ1/σn.
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SVD as Sum of Outer Products

What’s another way of writing the SVD?

Starting from (assuming m > n for simplicity)

A = UΣV T =

 | |
u1 · · · um
| |




σ1

. . .

σm
0


 − v1 −

...
− vn −


we find that

A =

 | |
u1 · · · um
| |


 − σ1v1 −

...
− σnvn −


= σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n .



SVD as Sum of Outer Products (II)

That means: The SVD writes the matrix A as a sum of outer
products (of left/right singular vectors). What could that be good
for?



Low-Rank Approximation (I)

What is the rank of σ1u1v
T
1 ?

1. (1 linearly independent column!)

What is the rank of σ1u1v
T
1 + σ2u2v

T
2 ?

2. (2 linearly independent–orthogonal–columns!)
Demo: Image compression (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/svd_app/Image compression.html


Low-Rank Approximation

What can we say about the low-rank approximation

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k

to
A = σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n?

For simplicity, assume σ1 > σ2 > · · · > σn>0.

Observe that Ak has rank k. (And A has rank n.)

Then ‖A−B‖2 among all rank-k (or lower) matrices B is
minimized by Ak.
(Eckart-Young Theorem)

Even better:

min
rankB6k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.



Low-Rank Approximation (II)

Ak is called the best rank-k approximation to A.
(where k can be any number)

This best-approximation property is what makes the SVD extremely
useful in applications and ultimately justifies its high cost.

It’s also the rank-k best-approximation in the Frobenius norm:

min
rankB6k

‖A−B‖F = ‖A−Ak‖F =
√
σ2
k+1 + · · ·σ2

n.
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