

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Recap: Interpolation

Starting point: Looking for a linear combination of functions ϕi to
hit given data points (xi, yi).

Interpolation becomes solving the linear system:

yi = f(xi) =

Nfunc∑
j=0

αj ϕj(xi)︸ ︷︷ ︸
Vij

↔ Vα = y.

Want unique answer: Pick Nfunc = N → V square.

V is called the (generalized) Vandermonde matrix.

Main lesson:

V (coefficients) = (values at nodes) .

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Rethinking Interpolation

We have so far always used monomials (1, x, x2, x3, . . .) and
equispaced points for interpolation. It turns out that this has
significant problems.
Demo: Monomial interpolation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Monomial interpolation.html

Demo: Choice of Nodes for Polynomial Interpolation (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Choice of Nodes for Polynomial Interpolation.html

Interpolation: Choosing Basis Function and Nodes

Both function basis and point set are under our control. What do
we pick?

Ideas for basis functions:

I Monomials 1, x, x2, x3, x4, . . .

I Functions that make V = I → ‘Lagrange basis’

I Functions that make V triangular → ‘Newton basis’

I Splines (piecewise polynomials)

I Orthogonal polynomials

I Sines and cosines

I ‘Bumps’ (‘Radial Basis Functions’)

Ideas for nodes:

I Equispaced

I ‘Edge-Clustered’ (so-called Chebyshev/Gauss/... nodes)

Better Conditioning: Orthogonal Polynomials

What caused monomials to have a terribly conditioned Vander-
monde?

Being close to linearly dependent.

What’s a way to make sure two vectors are not like that?

Orthogonality

But polynomials are functions!

How can those be orthogonal? Just need something like a dot
product!

f · g =

n∑
i=1

figi = 〈f , g〉

〈f, g〉 =

∫ 1

−1
f(x)g(x)dx

Better Conditioning: Orthogonal Polynomials (II)

Orthogonal then just means 〈f, g〉 = 0.
Q: How can we find an orthogonal basis?
A: Apply Gram-Schmidt to the monomials.
Obtained Legendre polynomials.
Demo: Orthogonal Polynomials (click to visit)

But how can I practically compute the Legendre polynomials?

→ DLMF, Chapter on orthogonal polynomials
Main lessons:

I There exist three-term recurrences. Easy to apply if you know
the first two.

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Orthogonal Polynomials.html

Better Conditioning: Orthogonal Polynomials (III)

I There is a whole zoo of polynomials there, depending on the
weight function w in the (generalized) inner product:

〈f, g〉 =

∫
w(x)f(x)g(x)dx.

Some sets of orthogonal polynomials live on intervals other
than (−1, 1).

Another Family of Orthogonal Polynomials: Chebyshev

Three equivalent definitions:

I Result of Gram-Schmidt with weight 1/
√

1− x2

What is that weight?

1/ (Half circle), i.e. x2 + y2 = 1, with y =
√

1− x2

I Tk(x) = cos(k cos−1(x))

I Tk(x) = 2xTk−1(x)− Tk−2(x)

Demo: Chebyshev interpolation (click to visit) (Part 1)

What are good nodes to use with Chebyshev polynomials?

The answer would be particularly simple if the nodes were cos(∗).
So why not cos (equispaced)?

Might get

xi = cos

(
i

k
π

)
(i = 0, 1, . . . , k)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Chebyshev interpolation.html

Chebyshev Nodes

Might also consider zeros (instead of roots) of Tk:

xi = cos

(
2i− 1

2k
π

)
(i = . . . , k).

The Vandermonde for these (with Tk) can be applied in O(N logN)
time, too.

It turns out that we were still looking for a good set of interpolation
nodes.

We came up with the criterion that the nodes should bunch towards
the ends. Do these do that?

Yes.
Demo: Chebyshev interpolation (click to visit) (Part 2)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Chebyshev interpolation.html

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Calculus on Interpolants

Suppose we have an interpolant f̃(x) with f(xi) = f̃(xi) for
i = 1, . . . , n:

f̃(x) = α1ϕ1(x) + · · ·+ αnϕn(x)

How do we compute the derivative of f̃?

f̃ ′(x) = α1ϕ
′
1(x) + · · ·+ αnϕ

′
n(x).

Easy because interpolation basis (ϕi) is known.

Suppose we have function values at nodes (xi, f(xi)) for i =
1, . . . , n for a function f . If we want f ′(xi), what can we do?

f ′(xi): Hard to get
f̃ ′(xi): Easy to get

Calculus on Interpolants (II)

So:

1. Compute coefficients α = V −1f , where
f = (f(x1), . . . , f(xn))T .

2. Build generalized Vandermonde with derivatives of basis:

V ′ =

 ϕ′1(x1) · · · ϕ′n(x1)
...

...
ϕ′1(xn) · · · ϕ′n(xn)

 .

3. Compute

V ′α =

 α1ϕ
′
1(x1) + · · ·+ αnϕ

′
n(x1)

...
α1ϕ

′
1(xn) + · · ·+ αnϕ

′
n(xn)

 =

 f̃ ′(x1)
...

f̃ ′(xn)

︸ ︷︷ ︸

f̃ ′

.

Calculus on Interpolants (III)

All in one step: f̃
′
= V ′V −1f .

In other words: V ′V −1 is a matrix to apply a derivative!
We call D = V ′V −1 a differentiation matrix.

About Differentiation Matrices

How could you find coefficients of the derivative in the original
basis (ϕi)?

α′ = V −1V ′ V −1f︸ ︷︷ ︸
coeff. in (ϕ′i)︸ ︷︷ ︸

coeff. in (ϕi)

.

Give a matrix that finds the second derivative.

Using above, we can apply repeated derivatives using just V and V ′:

f ′′ = V ′V −1V ′V −1︸ ︷︷ ︸
matrix for double differentiation

f .

Demo: Taking Derivatives with Vandermonde Matrices (click to
visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Taking Derivatives with Vandermonde Matrices.html

Finite Difference Formulas

It is possible to use the process above to find ‘canned’ formulas for
taking derivatives. Suppose we use three points equispaced points
(x− h, x, x+ h) for interpolation (i.e. a degree-2 polynomial).

I What is the resulting differentiation matrix?

I What does it tell us for the middle point?

D = V ′V −1 =

− 1

2h 0 1
2h

.

which we can check via
− 1

2h 0 1
2h

.

︸ ︷︷ ︸

D

 1 x− h (x− h)2

1 x x2

1 x+ h (x+ h)2

︸ ︷︷ ︸

V

=

0 1 2x
.

︸ ︷︷ ︸

V ′

Finite Difference Formulas (II)

(Can find the dependence on h by varying h and watching the
entries.) When we apply D, we get

V ′V −1

 f(x− h)
f(x)

f(x+ h)

 =

 . . .
f(x+h)−f(x−h)

2h
. . .

So we can compute an approximate (second-order accurate!)
derivative just by using this formula.
Generalizes to more (and non-center) points easily.

Reusing Finite Difference Formulas

Suppose we have the following finite difference rule using M
equispaced points to the left of x and N equispaced points to the
right of x (say, from a row of a differentiation matrix):

f ′(x) ≈
N∑

i=−M
αif(x+ ih).

How reusable is this rule?

Can we use this rule at a different x̃ 6= x?

Yes, with unchanged ‘coefficients’:

f ′(x̃) ≈
N∑

i=−M
αif(x̃+ ih).

Reusing Finite Difference Formulas (II)
This is true because if you consider a shifted function
g(x) = f(x− s) with s so that x̃ = x− s, then the rule still applies:

f ′(x̃) = f ′(x− s) = g′(x) ≈
N∑

i=−M
αig(x+ ih)

=

N∑
i=−M

αif(x− s+ ih)

=

N∑
i=−M

αif(x̃+ ih).

Can we use this rule with a different point distance h̃ = βh 6= h?

Yes, with scaled ‘coefficients’:

f ′(x) ≈
N∑

i=−M

αi

β
f(x+ iβh).

Reusing Finite Difference Formulas (III)

This is true because if you consider a scaled function g(x) = f(βx),
then the rule still applies:

βf ′(x) = g′(x) ≈
N∑

i=−M
αig(ih) =

N∑
i=−M

αif(βih),

so

f ′(x) ≈
N∑

i=−M

αi

β
f(βih).

Computing Integrals with Interpolation

Can we use a similar process to compute (approximate) integrals
of a function f?

The process of computing approximate integrals is called
‘quadrature’.
Same idea as derivatives: interpolate, then integrate.

Have: interpolant f̃(x) = α1ϕ1(x) + · · ·+ αnϕn(x)
so that f̃(xi) = f(xi) = yi. We’ll call the xi the quadrature nodes.

Want: Integral∫ b

a
f(x)dx ≈

∫ b

a
f̃(x)dx =

∫ b

a
α1ϕ1(x) + · · ·+ αnϕn(x)dx

= α1

∫ b

a
ϕ1(x)dx+ · · ·+ αn

∫ b

a
ϕn(x)dx.

Computing Integrals with Interpolation (II)

Idea: di =
∫ b
a ϕi(x)dx can be computed ahead of time, so that∫ b

a
f̃(x)dx = α1d1+· · ·+αndn = dTα = dT (V −1y) = (dTV −1)y.

Can call w := V −Td the quadrature weights and compute∫ b

a
f̃(x)dx = wTy = w · y.

Demo: Creating and Transforming Quadrature Rules (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Creating and Transforming Quadrature Rules.html

Example: Building a Quadrature Rule

Demo: Computing the Weights in Simpson’s Rule (click to visit)

Suppose we know

f(x0) = 2 f(x1) = 0 f(x2) = 3

x0 = 0 x1 =
1

2
x2 = 1

How can we find an approximate integral?

1. Find coefficients

α = V −1

 2
0
3

 .

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Computing the Weights in Simpson's Rule.html

Example: Building a Quadrature Rule (II)
2. Compute integrals∫ 1

0
1dx = 1∫ 1

0
xdx =

1

2∫ 1

0
x2dx =

[
1

3
x3

]1

0

=
1

3

3. Combine it all together:∫ 1

0
f̃(x)dx =

(
1 1

2
1
3

)
V −1︸ ︷︷ ︸

weights w

 2
0
3

 =

 .167
.667
.167

·
 f(0)

f(1/2)
f(1)

 .

These weights are dependent only on the choice of nodes and not
the basis functions (the interpolant is unique, so its integral is
unique). For equispaced points like above, the method defined by
the quadrature weights is called Simpson’s rule.

Using Quadrature Rules

To estimate an integral over an arbitrary interval [a, b] we can use a
quadrature rule with weights derived by integrating over [0, 1], since∫ b

a
f(x)dx =︸︷︷︸

x=(b−a)x̄+a

(b− a)

∫ 1

0
f((b− a)x̄+ a)dx̄.

Thus, given weights w = V −Td computed from integrating n basis
functions on [0, 1] (to get d) and V defined based on points
x̄1, . . . , x̄n ∈ [0, 1], we can use the same weights for the above
integral as ∫ b

a
f(x)dx ≈ (b− a)wTy.

Above y corresponds to f evaluated at points
(b− a)x̄1 + a, . . . , (b− a)x̄n + a.

Facts about Quadrature

What does Simpson’s rule look like on [0, 1/2]?

1

2

 .167
.667
.167

 ·
 f(0)

f(1/4)
f(1/2)

What does Simpson’s rule look like on [5, 6]?

 .167
.667
.167

 ·
 f(5)

f(5.5)
f(6)

How accurate is Simpson’s rule with polynomials of degree n?

Demo: Accuracy of Simpson’s rule (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/interp/Accuracy of Simpson's rule.html

Facts about Quadrature (II)
I Quadrature:∣∣∣∣∫ b

a
f(x)dx−

∫ b

a
f̃(x)dx

∣∣∣∣ 6 C · hn+2

(where h = b− a)
(Side note: due to a happy accident, even n produce an even
smaller error.)

I Interpolation:

max
x∈[a,b]

∣∣∣f(x)− f̃(x)
∣∣∣ 6 C · hn+1

I Differentiation:

max
x∈[a,b]

∣∣∣f ′(x)− f̃ ′(x)
∣∣∣ 6 C · hn

General lesson: More derivatives ⇒ Worse accuracy.

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

What is linear convergence? quadratic convergence?

Let ek = x̂k − x be the error in the kth estimate x̂k of a desired
solution x.

An iterative method converges with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

{
> 0,
<∞.

r = 1 is called linear convergence.
r > 1 is called superlinear convergence.
r = 2 is called quadratic convergence.

Examples:

I Power iteration is linearly convergent.

I Rayleigh quotient iteration is quadratically convergent.

About Convergence Rates

Demo: Rates of Convergence (click to visit)

Characterize linear, quadratic convergence in terms of the ‘number
of accurate digits’.

I Linear convergence gains a constant number of digits each step:

‖ek+1‖ 6 C ‖ek‖

(and C < 1 matters!)

I Quadratic convergence doubles the number of digits each step:

‖ek+1‖ 6 C ‖ek‖2

(Only starts making sense once ‖ek‖ is small. C doesn’t
matter much.)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/it_conv/Rates of Convergence.html

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

Solve f(x) = 0 for f : R→ R.
If looking for solution to f(x) = y, simply consider f(x) = f̃(x)− y.

This is called root finding. A related task is optimization, where one
looks to find an x∗ so that f(x∗) is minimal.
There are flavors of both root finding and optimization in one and n
dimensions.

Root Finding, Optimization: Applications

I FPUs: Assume you have built a floating point unit that can
add, subtract and multiply. At this point, division and square
root seem like obvious next steps to implement.
Newton’s method (see below) for finding 1/

√
y can be

implemented with just add/subtract/multiply. This in turn can
be used to implement both division and square root.
See https:

//en.wikipedia.org/wiki/Fast_inverse_square_root

for some related computer game nostalgia.

I GPS: GPS measures signal run time between satellites and a
receiver device. The receiver must solve the navigation
equations to determine latitude/longitude/elevation/time.
https://en.wikipedia.org/wiki/Global_Positioning_

System#Navigation_equations

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Global_Positioning_System#Navigation_equations
https://en.wikipedia.org/wiki/Global_Positioning_System#Navigation_equations

Root Finding, Optimization: Applications (II)

I Inverse kinematics: Given the desired position of the end of a
kinematic chain (such as the manipulator at the end of a robot
arm), finding the joint angles (i.e. the information needed to
drive the robot) requires solving f(θ) = y, where f is the
forward kinematic model based on the joint angles θ.

I Data fitting: Just like in our discussion of least squares, as soon
as a system of equations is non-square (such as when there is
more data than unknowns–think more than four satellites in
view for GPS), achieving f(x) = y becomes unlikely. A natural
idea is to consider the optimization problem ‖f(x)− y‖22
instead. (This specifically is called nonlinear least squares).

Bisection Method

Assume continuous function f has a zero on the interval [a, b] and

sign(f(a)) = −sign(f(b)).

Perform binary search: check sign of f((a+ b)/2) and define new
search interval so that ends have opposite sign.
Demo: Bisection Method (click to visit)

What’s the rate of convergence? What’s the constant?

Linear with constant 1/2.

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Bisection Method.html

Newton’s Method

Derive Newton’s method.

Idea: Approximate f at current iterate using Taylor.

f(xk + h) ≈ f(xk) + f ′(xk)h

Now find root of this linear approximation in terms of h:

f(xk) + f ′(xk)h = 0 ⇔ h = − f(xk)

f ′(xk)
.

So

x0 = 〈starting guess〉

xk+1 = xk −
f(xk)

f ′(xk)
= g(xk)

Demo: Newton’s Method (click to visit)
Demo: Convergence of Newton’s Method (click to visit)

What are some drawbacks of Newton?

I Convergence argument only good locally
Will see: convergence only local (near root)

I Have to have derivative!

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Newton's Method.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Convergence of Newton's Method.html

Secant Method

What would Newton without the use of the derivative look like?

Approximate

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
.

So

x0 = 〈starting guess〉

xk+1 = xk −
f(xk)

f(xk)−f(xk−1)
xk−xk−1

.

Rate of convergence (not shown) is
(
1 +
√

5
)
/2 ≈ 1.618.

Secant Method Drawbacks

What are some drawbacks of Secant?

I Convergence argument only good locally
Will see: convergence only local (near root)

I Slower convergence

I Need two starting guesses

Demo: Secant Method (click to visit)
In-class activity: Secant Method

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_1d/Secant Method.html

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Solving Nonlinear Equations

What is the goal here?

Solve f(x) = 0 for f : Rn → Rn

In other words, f(x) is now a vector-valued function

f(x) =

f1(x)
...

fn(x)

 =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

If looking for solution to f̃(x) = y, simply consider f(x) = f̃(x)− y.

Intuition: Each of the n equations describes a surface. Looking for
intersections.
Demo: Three quadratic functions (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_nd/Three quadratic functions.html

Newton’s method

What does Newton’s method look like in n dimensions?

Approximate by linear function:

f(x + s) = f(x) + Jf (x)s

where Jf is the Jacobian matrix of f :

Jf (x) =

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 (x).

Set to 0:

Jf (x)s = −f(x) ⇒ s = −(Jf (x))−1f(x)

That’s a linear system! (Surprised?)

Newton’s method (II)

So

x0 = 〈starting guess〉
xk+1 = xk − (Jf (xk))−1f(xk)

Downsides:

I Still only locally convergent

I Computing and inverting Jf is expensive.

Newton: Example

Set up Newton’s method to find a root of

f(x, y) =

(
x+ 2y − 2
x2 + 4y2 − 4

)
.

Mostly just need the Jacobian:

Jf (x, y) =

(
1 2

2x 8y

)
.

Demo: Newton’s method in n dimensions (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/solve_nd/Newton's method in n dimensions.html

Secant in n dimensions?

What would the secant method look like in n dimensions?

Need an ‘approximate Jacobian’ satisfying

J̃(xk+1 − xk) = f(xk+1)− f(xk).

Suppose we have already taken a step to xk+1. Could we ‘reverse
engineer’ J̃ from that equation?

I Solution non-unique: n2 unknowns in J̃ , but only n equations

I Better to ‘update’ J̃ with information from current guess.

One choice: Broyden’s method (minimizes change to J̃)

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Optimization

State the problem.

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f(x∗) = min
x
f(x) subject to g(x) = 0 and h(x) 6 0.

I g(x) = 0 and h(x) 6 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

I If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

I If f , g, h are linear, this is called linear programming.
Otherwise nonlinear programming.

I Q: What if we are looking for a maximizer?
A: Minimize −f instead.

Optimization (II)

I Examples:
I What is the fastest/cheapest/shortest... way to do...?

Q: What about multiple objectives?
A: Make up your mind–decide on one (or build a combined
objective). Then we’ll talk.

I Solve a (nonlinear!) system of equations ‘as well as you can’ (if
no exact solution exists)–similar to what least squares does for
linear systems:

min ‖F (x)‖

Optimization: What could go wrong?

What are some potential problems in optimization?

I No minimum exists: Function just ‘keeps going’.

Optimization: What could go wrong? (II)

I Find a local minimum when we meant to find a global
minimum.

"global minimum"

"local minimum"

Optimization: What is a solution?

How can we tell that we have a (at least local) minimum? (Re-
member calculus!)

I Necessary condition: f ′(x) = 0

I Sufficient condition: f ′(x) = 0 and f ′′(x) > 0.

Newton’s Method

Let’s steal the idea from Newton’s method for equation solving:
Build a simple version of f and minimize that.

Use Taylor approximation–with what degree?

Note: Line (i.e. degree 1 Taylor) wouldn’t suffice–lines have no
minimum. Must use at least parabola. (degree 2)

Newton’s Method (II)

f(x+ h) ≈ f(x) + f ′(x)h+ f ′′(x)
h2

2
=: f̃(h)

Solve 0 = f̃ ′(h) = f ′(x) + f ′′(x)h:

h = − f
′(x)

f ′′(x)

Newton’s Method (III)

1. x0 = 〈some starting guess〉

2. xk+1 = xk − f ′(xk)
f ′′(xk)

Q: Notice something? Identical to Newton for solving f ′(x) = 0.
Because of that: locally quadratically convergent.

Demo: Newton’s Method in 1D (click to visit)
In-class activity: Optimization Methods

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_1d/Newton's Method in 1D.html

Golden Section Search

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.

f is called unimodal if for all x1 < x2

I x2 < x∗ ⇒ f(x1) > f(x2)

I x∗ < x1 ⇒ f(x1) < f(x2)

Suppose we have an interval with f unimodal:

Golden Section Search (II)

Would like to maintain unimodality.

1. Pick x1, x2

2. If f(x1) > f(x2), reduce to (x1, b)

3. If f(x1) 6 f(x2), reduce to (a, x2)

Remaining question: Where to put x1, x2?

I Want symmetry:
x1 = a+ (1− τ)(b− a)
x2 = a+ τ(b− a)

I Want to reuse function evaluations: τ2 = 1− τ
Find: τ =

(√
5− 1

)
/2. Also known as the ‘golden section’.

I Hence golden section search.

Linearly convergent. Can we do better?

Demo: Golden Section Search Proportions (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_1d/Golden Section Search Proportions.html

Outline

Interpolation: A Second Look
Making Interpolation Work
Better
Calculus on Interpolants

Iteration and Convergence

Solving One Equation

Solving Many Equations
Finding the Best: Optimization in
1D

Optimization in n Dimensions

Optimization in n dimensions: What is a solution?

How can we tell that we have a (at least local) minimum? (Re-
member calculus!)

I Necessary condition: ∇f(x) = 0
∇f is a vector, the gradient:

∇f(x) =

∂f
∂x1

...
∂f
∂xn

I Sufficient condition: ∇f(x) = 0 and Hf (x) positive definite.

Hf (x) =

∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂xn∂xn

is called the Hessian matrix.

Steepest Descent

Given a scalar function f : Rn → R at a point x, which way is
down?

Direction of steepest descent: −∇f

Q: How far along the gradient should we go?

Unclear–do a line search. For example using Golden Section Search.

1. x0 = 〈some starting guess〉
2. sk = −∇f(xk)

3. Use line search to choose αk to minimize f(xk + αksk)

4. xk+1 = xk + αksk

5. Go to 2.

Observation: (from demo)

I Linear convergence

Demo: Steepest Descent (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Steepest Descent.html

Newton’s method (nD)

What does Newton’s method look like in n dimensions?

Build a Taylor approximation:

f(x+ s) ≈ f(x) +∇f(x)Ts+
1

2
sTHf (x)s =: f̂(s)

Then solve ∇f̂(s) = 0 for s to find

Hf (x)s = −∇f(x).

1. x0 = 〈some starting guess〉
2. Solve Hf (xk)sk = −∇f(xk) for sk

3. xk+1 = xk + sk

Drawbacks: (from demo)

Newton’s method (nD) (II)

I Need second (!) derivatives
(addressed by Conjugate Gradients, later in the class)

I local convergence

I Works poorly when Hf is nearly indefinite

Demo: Newton’s Method in n dimensions (click to visit)
Demo: Nelder-Mead Method (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Newton's Method in n dimensions.html
https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Nelder-Mead Method.html

Nonlinear Least Squares/Gauss-Newton

What if the f to be minimized is actually a 2-norm?

f(x) = ‖r(x)‖2 , r(x) = y − f(x)

Define ‘helper function’

ϕ(x) =
1

2
r(x)Tr(x) =

1

2
f2(x)

and minimize that instead.

∂

∂xi
ϕ =

1

2

n∑
j=1

∂

∂xi
[rj(x)2] =

∑
j

(
∂

∂xi
rj

)
rj ,

or, in matrix form:

∇ϕ = Jr(x)Tr(x).

Nonlinear Least Squares/Gauss-Newton (II)
For brevity: J := Jr(x). Can show similarly:

Hϕ(x) = JTJ +
∑
i

riHri(x).

Newton step s can be found by solving

Hϕ(x)s = −∇ϕ

Observation:
∑

i riHri(x) is inconvenient to compute and unlikely
to be large (since it’s multiplied by components of the residual,
which is supposed to be small) → forget about it.

Gauss-Newton method: Find step s by

JTJs = −∇ϕ = −JTr(x)

Does that remind you of the normal equations?

Js ∼= −r(x)

Nonlinear Least Squares/Gauss-Newton (III)
Solve that using our existing methods for least-squares problems.

Observations: (from demo)

I Newton on its own is only locally convergent

I Gauss-Newton is clearly similar

I It’s worse because the step is only approximate
→ Much depends on the starting guess.

If Gauss-Newton on its own is poorly, conditioned, can try
Levenberg-Marquardt:

(Jr(xk)TJr(xk)+µkI)sk = −Jr(xk)Tr(xk)

for a ‘carefully chosen’ µk. This makes the system matrix ‘more
invertible’ but also less accurate/faithful to the problem. Can also
be translated into a least squares problem (see book).

What Levenberg-Marquardt does is generically called
‘Regularization’: Make H more positive definite.
Demo: Gauss-Newton (click to visit)

https://relate.cs.illinois.edu/course/cs357-s17/f/demos/upload/opt_nd/Gauss-Newton.html

	Interpolation: A Second Look
	Making Interpolation Work Better
	Calculus on Interpolants

	Iteration and Convergence
	Solving One Equation
	Solving Many Equations
	Finding the Best: Optimization in 1D
	Optimization in n Dimensions

