Overview - FP	- 1ET debrief (nexTVu) - Examlet 2
- T 1	
- Inclass	(0xtended!)
_	- HWY (onlsoon)

Demo: Density of Floating Point Numbers **Demo:** Floating Point vs. Program Logic

Floating Point and Rounding Error

What is the relative error produced by working with floating point numbers?

What is smallest floating point number > 1? Assume / stored bits in the significand.

What's the smallest FP number >1024 in that same system?

Can we give that number a name?

What does this say about relative error?
Relative error in rounding to
Relative error in rounding to Al: machine epsilon
I

Implementing Arithmetic

How is floating point addition implemented? Consider adding $a=(1.101)_2\cdot 2^1$ and $b=(1.001)_2\cdot 2^{-1}$ in a system with three bits in the significand.

Demo: Floating point and the harmonic series

Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude?

As an example, consider $a=(1.1011)_2\cdot 2^0$ and $b=(1.1010)_2\cdot 2^0.$

Demo: Catastrophic Cancellation **In-class activity:** Floating Point 2

Outline

Modeling the World with Arrays The World in a Vector What can Matrices Do? Graphs Sparsity Low-Rank Approximation