

Fitting a Model to Data

Demo: Data Fitting using Least Squares

Meaning of the Singular Values

```
What do the singular values mean? (in particular the first/largest
||A|| = max ||Ax||2
        = M 11 U E V 4 x 1/2
   = max || (V x ||_2
/-> ||*||_=|
```

Condition Numbers

How would you compute a 2-norm condition number?

$$con \Lambda_2(A) = ||A||_2 ||A''||_2$$

$$= \sigma_1 = \frac{1}{\sigma_n}$$

$$A'' = V(\frac{1}{\sigma_n}, \frac{1}{\sigma_n}) ur$$

Outline

The World in a Vector

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear

Systems

Data Fitting

Norms and Condition

Numbers

Low-Rank Approximation

Interpolation

teration and Convergence

Solving One Equation

Solving Many Equations

Finding the Best: Optimization in 1D

Optimization in n Dimension

SVD as Sum of Outer Products

$$A = \sigma_{1} u_{1} v_{1}^{T} + \sigma_{1} u_{1} v_{2}^{T} + \cdots + \sigma_{n} u_{n} v_{n}^{T}$$

$$A_{3} = \sigma_{1} u_{1} v_{1}^{T} + \sigma_{2} u_{1} v_{2}^{T} + \sigma_{3} u_{3} v_{3}^{T}$$

$$3 (h + u) + 3$$

A m

Low-Rank Approximation (I)

What is the *rank* of $\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T$?

What is the *rank* of $\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T$?

Demo: Image Compression

Low-Rank Approximation

What can we say about the low-rank approximation
$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_1 u_n v_n^T?$$
 to
$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_1 u_n v_n^T?$$
 For simplicity, assume $\sigma_1 \geqslant \sigma_2 \geqslant \dots \geqslant \sigma_n > 0$.

Outline

The World in a Vector Low-Rank Approximation Interpolation