
Proof Intuition for Interpolation Error Bound

Let us consider an interpolant f̃ based on n = 2 points so

f̃(x1) = f(x1) and f̃(x2) = f(x2).

The interpolation error is O((x2−x1)
2) for any x ∈ [x1, x2], why?



Proof of Interpolation Error Bound

We can use induction on n to show that if E(x) = f(x) − f̃(x)
has n zeros x1, . . . , xn and f̃ is a degree n polynomial, then there
exist y1, . . . , yn such that
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f (n+1)(wn)dwn · · · dw0 (1)



Making Use of Interpolants

Suppose we can approximate a function as a polynomial:

f(x) ≈ a0 + a1x+ a2x
2 + a3x

3.

How is that useful? E.g. what if we want the integral of f?

Demo: Computing π with Interpolation



More General Functions

Is this technique limited to the monomials {1, x, x2, x3, . . .}?

No, not at all. Works for any set of functions {ϕ1, . . . ,ϕn} for
which the generalized Vandermonde matrix




ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)




is invertible.



Interpolation with General Sets of Functions

For a general set of functions {ϕ1, . . . ,ϕn}, solve the linear system
with the generalized Vandermonde matrix for the coefficients
(a1, . . . , an):




ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)




� �� �
V




a1
a2
...
an




� �� �
a

=




f(x1)
f(x2)

...
f(xn)




� �� �
f

.

Given those coefficients, what is the interpolant f̃ satisfying
f̃(xi) = f(xi)?

In-class activity: Interpolation
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Randomness: Why?

What types of problems can we solve with the help of random
numbers?

We can compute (potentially) complicated averages.

� Where does ‘the average’ web surfer end up? (PageRank)

� How much is my stock portfolio/option going to be worth?

� How will my robot behave if there is measurement error?



Random Variables

What is a random variable?

A random variable X is a function that depends on ‘the (random)
state of the world’.

Example: X could be

� ‘how much rain tomorrow?’, or

� ‘will my buttered bread land face-down?’

Idea: Since I don’t know the entire state of the world (i.e. all the
influencing factors), I can’t know the value of X.

→ Next best thing: Say something about the average case.

To do that, I need to know how likely each individual value of X is.
I need a probability distribution.



Probability Distributions

What kinds of probability distributions are there?

Demo: Plotting Distributions with Histograms



Expected Values/Averages: What?

Define ‘expected value’ of a random variable.

Define variance of a random variable.



Expected Value: Example I

What is the expected snowfall in Champaign?



Tool: Law of Large Numbers

Terminology:

� Sample: A sample s1, . . . , sN of a discrete random variable X
(with potential values x1, . . . , xn) selects each si such that
si = xj with probability p(xj).

In words:

� As the number of samples N → ∞, the average of samples
converges to the expected value with probability 1.

What can samples tell us about the distribution?



Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to
evaluate.

How can we approximate an expected value?
Idea: Draw random samples. Make sure they are distributed
according to p(x).

What is a Monte Carlo (MC) method?



Expected Values with Hard-to-Sample Distributions

Computing the sample mean requires samples from the distribution
p(x) of the random variable X. What if such samples aren’t
available?



Switching Distributions for Sampling

Found:

E[X] = E

�
X̃ · p(X̃)

p̃(X̃)

�

Why is this useful for sampling?

In-class activity: Monte-Carlo Methods



Expected Value: Example II

What is the expected snowfall in Illinois?



Dealing with Unknown Scaling

What if a distribution function is only known up to a constant
factor, e.g.

p(x) = C ·
�

1 point x is in IL,
0 it isn’t.� �� �

q(x)

Typically
�
�
q �= 1. We need to find C so that

�
p = 1, i.e.

C =
1�

�
q(x)dx

.

Idea: Use sampling.



Demo: Computing π using Sampling
Demo: Errors in Sampling



Sampling: Error

The Central Limit Theorem states that with

Sn := s1 + s2 + · · ·+ sn

for the (si) independent and identically distributed according to
random variable X with variance σ2, we have that

Sn − nE[X]√
σ2n

→ N (0, 1),

i.e. that term approaches the normal distribution. Or, short and
imprecise, ����

1

n
Sn − E[X]

���� = O

�
1√
n

�
.



Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?

What are some disadvantages of MC methods?



Computers and Random Numbers

[from xkcd]

How can a computer make random numbers?



Random Numbers: What do we want?

What properties can ‘random numbers’ have?

� Have a specific distribution
(often ‘uniform’–each value between, say, 0 and 1, is equally
likely)

� Real-valued/integer-valued

� Repeatable (i.e. you may ask to exactly reproduce a sequence)
� Unpredictable

� V1: ‘I have no idea what it’s going to do next.’
� V2: No amount of engineering effort can get me the next

number.

� Uncorrelated with later parts of the sequence
(Weaker: Doesn’t repeat after a short time)

� Usable on parallel computers



What’s a Pseudorandom Number?

Actual randomness seems like a lot of work. How about ‘pseudo-
random numbers?’

Idea: Maintain some ‘state’. Every time someone asks for a
number:

random number, new state = f(state)

Satisfy:

� Distribution

� ‘I have no idea what it’s going to do next.’

� Repeatable (just save the state)

� Typically not easy to use on parallel computers



Demo: Playing around with Random Number Generators



Some Pseudorandom Number Generators

Lots of variants of this idea:

� LC: ‘Linear congruential’ generators

� MT: ‘Mersenne twister’

Remarks:

� Initial state and parameter choice often surprisingly tricky.
Bad choice: Predictable/correlated numbers.
E.g. Debian OpenSSL RNG disaster

� Absolutely no reason to use LC or MT any more. (Although
almost all randonumber generators you’re likely to find are
based on those–Python’s random module, numpy.random, C’s
rand(), C’s rand48().

� These are obsolete.



Counter-Based Random Number Generation (CBRNG)

What’s a CBRNG?

Idea: Cryptography has way stronger requirements than RNGs.
And the output must ‘look random’.

E.g. AES:
128 encrypted bits = AES (128-bit plaintext, 128 bit key)

Read that as:
128 random bits = AES (128-bit counter, arbitrary 128 bit key)

� Just use 1, 2, 3, 4, 5, . . . . as the counter.

� No quality requirements on counter or key to obtain
high-quality random numbers

� Very easy to use on parallel computers

� Often accelerated by hardware, faster than the competition



Demo: Counter-Based Random Number Generation
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