Proof Intuition for Interpolation Error Bound

Let us consider an interpolant \tilde{f} based on n=2 points so

$$\tilde{f}(x_1) = f(x_1)$$
 and $\tilde{f}(x_2) = f(x_2)$.

The interpolation error is $O((x_2-x_1)^2)$ for any $x \in [x_1,x_2]$, why?

$$E(x) : F(x) - \widehat{f}(x)$$

$$E(y_1) : 0 \quad E(x_2) = 0$$

$$E(x_1) : 0 \quad E(x_2) = 0$$

Proof of Interpolation Error Bound

We can use induction on
$$n$$
 to show that if $E(x) = f(x) - \tilde{f}(x)$ has n zeros x_1, \ldots, x_n and \tilde{f} is a degree n polynomial, then there exist y_1, \ldots, y_n such that

$$E(x) = \int_{x_1}^{x} \int_{y_1}^{w_0} \cdots \int_{y_n}^{w_{n-1}} f^{(n+1)}(w_n) dw_n \cdots dw_0 \qquad (1)$$

$$E(x) = E(x) + \int_{x_1}^{x} E(w_n) dw_n$$

$$E(x) = E(x, 1) + \int_{x}^{x} E'(w, 1) dw,$$

$$|e| E'(z) = 0$$

$$|E(x)| \leq \int_{x}^{x} (E'(z) + \int_{x}^{x} E'(w, 1) dw, |dw|) dw$$

$$|E(x)| \leq \int_{x}^{x} (-1)^{x} |f(x)| dw, |dw| \leq \frac{|f'(w, 1)|}{|f(x)|} |f(x)|$$

Making Use of Interpolants

Suppose we can approximate a function as a polynomial:

$$f(x) \approx a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

How is that useful? E.g. what if we want the integral of f?

$$\int_{s}^{t} f(x) dx \approx a_{s}(t-s) + \frac{a_{1}}{2}(t-s)^{2} + \dots$$

$$\approx \frac{c}{1} \frac{a_{1}}{(t+1)!} (t-s)^{t+1}$$

Demo: Computing π with Interpolation

More General Functions

Is this technique limited to the monomials $\{1, x, x^2, x^3, \ldots\}$?

No, not at all. Works for any set of functions $\{\varphi_1, \dots, \varphi_n\}$ for which the generalized Vandermonde matrix

$$\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} \mathbf{c}_{\bullet, \bullet} \\ \mathbf{c}_{\bullet, \bullet} \end{pmatrix}$$

is invertible.

Interpolation with General Sets of Functions

For a general set of functions $\{\varphi_1,\ldots,\varphi_n\}$, solve the linear system with the generalized Vandermonde matrix for the coefficients (a_1,\ldots,a_n) :

$$\underbrace{\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix}}_{V} \underbrace{\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}}_{\mathbf{a}} = \underbrace{\begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{pmatrix}}_{\mathbf{f}}.$$

Given those coefficients, what is the interpolant \tilde{f} satisfying $\tilde{f}(x_i) = f(x_i)$?

$$\widehat{f}(x) = \varphi_1(x) \cdot \alpha_1 + \varphi_2(x) \cdot \alpha_2 + \dots$$

$$= \widehat{\xi}_{\alpha_1} \varphi_1(x)$$

In-class activity: Interpolation

Outline

Making Models with Monte Carlo Low-Rank Approximation

Randomness: Why?

What types of problems can we solve with the help of random numbers?

We can compute (potentially) complicated averages.

- ▶ Where does 'the average' web surfer end up? (PageRank)
- How much is my stock portfolio/option going to be worth?
- How will my robot behave if there is measurement error?

Random Variables

What is a random variable?

A random variable X is a function that depends on 'the (random) state of the world'.

Example: X could be

- ▶ 'how much rain tomorrow?', or
- 'will my buttered bread land face-down?'

Idea: Since I don't know the entire state of the world (i.e. all the influencing factors), I can't know the value of X.

 \rightarrow Next best thing: Say something about the average case.

To do that, I need to know how likely each individual value of \boldsymbol{X} is. I need a probability distribution.

Probability Distributions

What kinds of probability distributions are there?

Continuous
$$p(x)$$
 for $x \in [a,b]$

$$\int_{a}^{b} p(x) dx = 1 \qquad p(x) \ge 0$$

$$0 + s \text{ or } t \in X = x, \quad X = x, \quad X = x,$$

$$P_1 \qquad P_2 \qquad P_n$$

$$\sum_{i=1}^{n} p_i = 1 \qquad p_i > 0$$

$$\sum_{i=1}^{n} p_i = 1 \qquad p_i > 0$$

$$\sum_{i=1}^{n} p_i = 1 \qquad p_i > 0$$

Demo: Plotting Distributions with Histograms

Expected Values/Averages: What?

Define 'expected value' of a random variable.

Define variance of a random variable.

Expected Value: Example I

What is the expected snowfall in Champaign?

E[Snow] = Snow (day) p (day) of Snow · Random Variable amount of snow in I yell

Tool: Law of Large Numbers

Terminology:

▶ Sample: A sample s_1, \ldots, s_N of a discrete random variable X (with potential values x_1, \ldots, x_n) selects each s_i such that $s_i = x_j$ with probability $p(x_j)$.

In words:

As the number of samples $N \to \infty$, the average of samples converges to the expected value with probability 1.

What can samples tell us about the distribution?

$$E[x] = \lim_{N \to \infty} \sqrt{\sum_{i=1}^{N} S_i}$$

$$= \sum_{i=1}^{N} X_i \cdot p(X_i)$$

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to evaluate.

How can we approximate an expected value?

Idea: Draw random samples. Make sure they are distributed according to p(x).

What is a Monte Carlo (MC) method?

Me method computer an approximation based or a random sample.

Expected Values with Hard-to-Sample Distributions

Computing the sample mean requires samples from the distribution p(x) of the random variable X. What if such samples aren't available?

Switching Distributions for Sampling

Found:

$$E[X] = E\left[\tilde{X} \cdot \frac{p(\tilde{X})}{\tilde{p}(\tilde{X})}\right]$$

Why is this useful for sampling?

$$\overline{S}_{1}...\overline{S}_{N}$$
 from X_{1} , oherer $\overline{p}(\overline{X})$

$$E[X] = N \underbrace{S}_{1} \cdot \frac{p(S_{1})}{\overline{p}(S_{1})}$$

In-class activity: Monte-Carlo Methods

Expected Value: Example II

What is the expected snowfall in Illinois?

Dealing with Unknown Scaling

What if a distribution function is only known up to a constant factor, e.g.

$$p(x) = C \cdot \underbrace{ \left\{ \begin{array}{ll} 1 & \text{point } x \text{ is in IL,} \\ 0 & \text{it isn't.} \end{array} \right.}_{q(x)}$$

Typically $\int_{\mathbb{R}} q \neq 1$. We need to find C so that $\int p = 1$, i.e.

$$C = \frac{1}{\int_{\mathbb{R}} q(x)dx}.$$

Idea: Use sampling.

Demo: Computing π using Sampling

Demo: Errors in Sampling

Sampling: Error

The Central Limit Theorem states that with

$$S_n := s_1 + s_2 + \dots + s_n$$

for the (s_i) independent and identically distributed according to random variable X with variance σ^2 , we have that

$$\frac{S_n - nE[X]}{\sqrt{\sigma^2 n}} \to \mathcal{N}(0, 1),$$

i.e. that term approaches the normal distribution. Or, short and imprecise,

$$\left| \frac{1}{n} S_n - E[X] \right| = O\left(\frac{1}{\sqrt{n}}\right).$$

Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?

What are some disadvantages of MC methods?

Computers and Random Numbers

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```

[from xkcd]

How can a computer make random numbers?

Random Numbers: What do we want?

What properties can 'random numbers' have?

- Have a specific distribution (often 'uniform'-each value between, say, 0 and 1, is equally likely)
- Real-valued/integer-valued
- ► Repeatable (i.e. you may ask to exactly reproduce a sequence)
- Unpredictable
 - V1: 'I have no idea what it's going to do next.'
 - V2: No amount of engineering effort can get me the next number.
- Uncorrelated with later parts of the sequence (Weaker: Doesn't repeat after a short time)
- Usable on parallel computers

What's a Pseudorandom Number?

Actual randomness seems like a lot of work. How about 'pseudorandom numbers?'

Idea: Maintain some 'state'. Every time someone asks for a number:

 $random_number, new_state = f(state)$

Satisfy:

- Distribution
- 'I have no idea what it's going to do next.'
- Repeatable (just save the state)
- Typically not easy to use on parallel computers

Demo: Playing around with Random Number Generators

Some Pseudorandom Number Generators

Lots of variants of this idea:

- ▶ LC: 'Linear congruential' generators
- MT: 'Mersenne twister'

Remarks:

- ► Initial state and parameter choice often surprisingly tricky. Bad choice: Predictable/correlated numbers.
 - E.g. Debian OpenSSL RNG disaster
- ▶ Absolutely **no reason** to use LC or MT any more. (Although almost all randonumber generators you're likely to find are based on those—Python's random module, numpy.random, C's rand(), C's rand48().
- ► These are **obsolete**.

Counter-Based Random Number Generation (CBRNG)

What's a CBRNG?

Idea: Cryptography has *way* stronger requirements than RNGs. *And* the output *must* 'look random'.

E.g. AES:

128 encrypted bits = AES (128-bit plaintext, 128 bit key)

Read that as:

128 random bits = AES (128-bit counter, arbitrary 128 bit key)

- ▶ Just use $1, 2, 3, 4, 5, \ldots$ as the counter.
- No quality requirements on counter or key to obtain high-quality random numbers
- Very easy to use on parallel computers
- Often accelerated by hardware, faster than the competition

Demo: Counter-Based Random Number Generation

Outline

Error, Accuracy and Convergence

Low-Rank Approximation