
Proof Intuition for Interpolation Error Bound

Let us consider an interpolant f̃ based on n = 2 points so

f̃(x1) = f(x1) and f̃(x2) = f(x2).

The interpolation error is O((x2−x1)
2) for any x ∈ [x1, x2], why?

Proof of Interpolation Error Bound

We can use induction on n to show that if E(x) = f(x) − f̃(x)
has n zeros x1, . . . , xn and f̃ is a degree n polynomial, then there
exist y1, . . . , yn such that

E(x) =

� x

x1

� w0

y1

· · ·
� wn−1

yn

f (n+1)(wn)dwn · · · dw0 (1)

Making Use of Interpolants

Suppose we can approximate a function as a polynomial:

f(x) ≈ a0 + a1x+ a2x
2 + a3x

3.

How is that useful? E.g. what if we want the integral of f?

Demo: Computing π with Interpolation

More General Functions

Is this technique limited to the monomials {1, x, x2, x3, . . .}?

No, not at all. Works for any set of functions {ϕ1, . . . ,ϕn} for
which the generalized Vandermonde matrix




ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)




is invertible.

Interpolation with General Sets of Functions

For a general set of functions {ϕ1, . . . ,ϕn}, solve the linear system
with the generalized Vandermonde matrix for the coefficients
(a1, . . . , an):




ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)




� �� �
V




a1
a2
...
an




� �� �
a

=




f(x1)
f(x2)

...
f(xn)




� �� �
f

.

Given those coefficients, what is the interpolant f̃ satisfying
f̃(xi) = f(xi)?

In-class activity: Interpolation

Outline

Python, Numpy, and Matplotlib

Making Models with Polynomials
Making Models with Monte
Carlo

Error, Accuracy and Convergence

Floating Point

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU

LU: Applications
Linear Algebra Applications
Interpolation

Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications

Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation

Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

Randomness: Why?

What types of problems can we solve with the help of random
numbers?

We can compute (potentially) complicated averages.

� Where does ‘the average’ web surfer end up? (PageRank)

� How much is my stock portfolio/option going to be worth?

� How will my robot behave if there is measurement error?

Random Variables

What is a random variable?

A random variable X is a function that depends on ‘the (random)
state of the world’.

Example: X could be

� ‘how much rain tomorrow?’, or

� ‘will my buttered bread land face-down?’

Idea: Since I don’t know the entire state of the world (i.e. all the
influencing factors), I can’t know the value of X.

→ Next best thing: Say something about the average case.

To do that, I need to know how likely each individual value of X is.
I need a probability distribution.

Probability Distributions

What kinds of probability distributions are there?

Demo: Plotting Distributions with Histograms

Expected Values/Averages: What?

Define ‘expected value’ of a random variable.

Define variance of a random variable.

Expected Value: Example I

What is the expected snowfall in Champaign?

Tool: Law of Large Numbers

Terminology:

� Sample: A sample s1, . . . , sN of a discrete random variable X
(with potential values x1, . . . , xn) selects each si such that
si = xj with probability p(xj).

In words:

� As the number of samples N → ∞, the average of samples
converges to the expected value with probability 1.

What can samples tell us about the distribution?

Sampling: Approximating Expected Values

Integrals and sums in expected values are often challenging to
evaluate.

How can we approximate an expected value?
Idea: Draw random samples. Make sure they are distributed
according to p(x).

What is a Monte Carlo (MC) method?

Expected Values with Hard-to-Sample Distributions

Computing the sample mean requires samples from the distribution
p(x) of the random variable X. What if such samples aren’t
available?

Switching Distributions for Sampling

Found:

E[X] = E

�
X̃ · p(X̃)

p̃(X̃)

�

Why is this useful for sampling?

In-class activity: Monte-Carlo Methods

Expected Value: Example II

What is the expected snowfall in Illinois?

Dealing with Unknown Scaling

What if a distribution function is only known up to a constant
factor, e.g.

p(x) = C ·
�

1 point x is in IL,
0 it isn’t.� �� �

q(x)

Typically
�
�
q �= 1. We need to find C so that

�
p = 1, i.e.

C =
1�

�
q(x)dx

.

Idea: Use sampling.

Demo: Computing π using Sampling
Demo: Errors in Sampling

Sampling: Error

The Central Limit Theorem states that with

Sn := s1 + s2 + · · ·+ sn

for the (si) independent and identically distributed according to
random variable X with variance σ2, we have that

Sn − nE[X]√
σ2n

→ N (0, 1),

i.e. that term approaches the normal distribution. Or, short and
imprecise, ����

1

n
Sn − E[X]

���� = O

�
1√
n

�
.

Monte Carlo Methods: The Good and the Bad

What are some advantages of MC methods?

What are some disadvantages of MC methods?

Computers and Random Numbers

[from xkcd]

How can a computer make random numbers?

Random Numbers: What do we want?

What properties can ‘random numbers’ have?

� Have a specific distribution
(often ‘uniform’–each value between, say, 0 and 1, is equally
likely)

� Real-valued/integer-valued

� Repeatable (i.e. you may ask to exactly reproduce a sequence)
� Unpredictable

� V1: ‘I have no idea what it’s going to do next.’
� V2: No amount of engineering effort can get me the next

number.

� Uncorrelated with later parts of the sequence
(Weaker: Doesn’t repeat after a short time)

� Usable on parallel computers

What’s a Pseudorandom Number?

Actual randomness seems like a lot of work. How about ‘pseudo-
random numbers?’

Idea: Maintain some ‘state’. Every time someone asks for a
number:

random number, new state = f(state)

Satisfy:

� Distribution

� ‘I have no idea what it’s going to do next.’

� Repeatable (just save the state)

� Typically not easy to use on parallel computers

Demo: Playing around with Random Number Generators

Some Pseudorandom Number Generators

Lots of variants of this idea:

� LC: ‘Linear congruential’ generators

� MT: ‘Mersenne twister’

Remarks:

� Initial state and parameter choice often surprisingly tricky.
Bad choice: Predictable/correlated numbers.
E.g. Debian OpenSSL RNG disaster

� Absolutely no reason to use LC or MT any more. (Although
almost all randonumber generators you’re likely to find are
based on those–Python’s random module, numpy.random, C’s
rand(), C’s rand48().

� These are obsolete.

Counter-Based Random Number Generation (CBRNG)

What’s a CBRNG?

Idea: Cryptography has way stronger requirements than RNGs.
And the output must ‘look random’.

E.g. AES:
128 encrypted bits = AES (128-bit plaintext, 128 bit key)

Read that as:
128 random bits = AES (128-bit counter, arbitrary 128 bit key)

� Just use 1, 2, 3, 4, 5, as the counter.

� No quality requirements on counter or key to obtain
high-quality random numbers

� Very easy to use on parallel computers

� Often accelerated by hardware, faster than the competition

Demo: Counter-Based Random Number Generation

Outline

Python, Numpy, and Matplotlib

Making Models with Polynomials
Making Models with Monte
Carlo

Error, Accuracy and Convergence

Floating Point

Modeling the World with Arrays
The World in a Vector
What can Matrices Do?
Graphs
Sparsity

Norms and Errors
The ‘Undo’ Button for Linear
Operations: LU

LU: Applications
Linear Algebra Applications
Interpolation

Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications

Solving Funny-Shaped Linear
Systems
Data Fitting
Norms and Condition
Numbers
Low-Rank Approximation

Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
Optimization in n Dimensions

