Reconstructing a Function From Derivatives

Found: Taylor series approximation.

FO+2) ~ F(0)+ f(0)z + f';(‘))xz L

The general Taylor expansion with center g = 0 is
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Demo: Polynomial Approximation with Derivatives (Part I)



Shifting the Expansion Center

o Can you do this at points other than the origin?



Errors in Taylor Approximation (1)

o Can’t sum infinitely many terms. Have to truncate. How big of an error does

this cause?
Demo: Polynomial Approximation with Derivatives (Part I1)
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Making Predictions with Taylor Truncation Error

o Suppose you expand v/ — 10 in a Taylor polynomial of degree 3 about the
center zg = 12. For h; = 0.05, you find that the Taylor truncation error is
about 1074

What is the Taylor truncation error for hy = 0.0257
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Demo: Polynomial Approximation with Derivatives (Part I11)



Taylor Remainders: the Full Truth

Let f: R — R be $@ + 1)-times differentiabl the interval (zg,z) with f(")
continuous on [zg, z]. Then exists a { € (zp,x) so that
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Proof of Taylor Remainder Theorem

o Intuitively the error of an approximation that takes into account n derivatives
should be proportional to the maximum value of the (n + 1)th one...
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In-class activity: Taylor series



Using Polynomial Approximation

o Suppose we can approximate a function as a polynomial:

f(z) = ag + a1 + axx® + azx>.

How is that useful? Say, if | wanted the integral of f7
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Demo: Computing m with Taylor
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