Outline Brief Example Overren GVZ Review Delikition SVD Applications linear systems least squares - data fithing approximation Company k(A), given AX, A'X
Estimetry C/Al = ||All || A-1 ||2 = mex / ||Ax||2 x | ||x||.

Singular Value Decomposition

What is the Singular Value Decomposition ('SVD')?

Computing the SVD

How can I compute an SVD of a matrix A? Find the columns and V Las le equator of ATA Digomin ATA if of (diagonitaly)
is zero and Ais
square, the Aissingaly A = U EVT AV 2" = W invertibl?

Demo: Computing the SVD Ptago mora Hon Les cost 8 (n3) ATAV has evil O(n3) As relating high

How Expensive is it to Compute the SVD?

Demo: Relative Cost of Matrix Factorizations

'Reduced' SVD

The World in a Vector

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear

Systems

Data Fitting

Norms and Condition

Numbers

Low-Rank Approximation

Interpolation

teration and Convergence

Solving One Equation

Solving Many Equations

in 1D

Optimization in n Dimension

The World in a Vector

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear

Systems

Data Fitting

Norms and Condition

Numbers

Low-Rank Approximation

Interpolation

teration and Convergence

Solving One Equation

Solving Many Equations

in 1D

Optimization in n Dimension

Solve Square Linear Systems

Can the SVD $A = U\Sigma V^T$ be used to solve *square* linear systems?

At what cost (once the SVD is known)?

At what cost (once the SVD is known)?

At
$$= 12 \times 17$$

At $= 13 \times 17$

At $=$

Tall and Skinny Systems

Minimu regided, find & such that

Are b minimu & [5] (5; 6)

Solving Least-Squares

How can I actually *solve* a least-squares problem $Ax \cong b$? 1 Ax-6 12 ~ ~ wining 1 Ax-6/12 114201 x - 611, ~ 11 EV x - 4 bll,

A:
$$U \leq V^T$$

A⁺ = $V \leq U^T$

Squar case

A⁻¹ = $(u \leq V^T)^T = V^T \leq U^T$

= $V \leq U^T$

= $V \leq U^T$

In-class activity: SVD and Least Squares

The Pseudoinverse: A Shortcut for Least Squares

How could the solution process for $A\pmb{x}\cong \pmb{b}$ be with an $\mathsf{SVD}A=U\Sigma V^T$ be 'packaged up'?

The Normal Equations

You may have learned the 'normal equations' $A^TAx = A^Tb$ to solve $Ax \cong b$.

Why not use those?

The World in a Vector

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear

Systems

Data Fitting

Norms and Condition

Numbers

Low-Rank Approximation

Interpolation

Iteration and Convergence

Solving One Equation

Solving Many Equations

in 1D

in ID

Optimization in n Dimensions

Fitting a Model to Data

Demo: Data Fitting using Least Squares

The World in a Vector

Approximate Undo: SVD and Least Squares

SVD: Applications

Solving Funny-Shaped Linear

Systems

Data Fitting

Norms and Condition

Numbers

Low-Rank Approximation

Interpolation

teration and Convergence

Solving One Equation

Solving Many Equations

Finding the Bost: Optimis

in 1D

IN ID

Optimization in n Dimensions

Meaning of the Singular Values

What do the singular values mean? (in particular the first/largest one)

```
Jmin = /max Zil
- 11 All .
11 A'12 = mex 1 4 EV X 112
                          CONTA : 5 mex
     : max | U Z y | 7
      = max [16 y]] = mex 2; = onex
```