

Vandermonde Linear Systems

Polynomial interpolation is a critical component in many numerical models.

$$p(x) = a_0 \underbrace{1 + a_1 x + a_1 x^2 + \cdots + a_{n-1} x^{n-1}}_{p(x_i)} = y_i$$

$$p(x_i) = y_i$$

$$\underbrace{\frac{1}{1}}_{x_n} \underbrace{x_n}_{x_n} \underbrace{x_n} \underbrace{x_n}_{x_n} \underbrace{x_n}_{x_n} \underbrace{x_n}_{$$

Demo: Polynomial Approximation with Point Values

Error in Interpolation

How did the interpolation error behave in the demo?

To fix notation: f is the function we're interpolating. \tilde{f} is the interpolant that obeys $\tilde{f}(x_i) = f(x_i)$ for $x_i = x_1 < \ldots < x_n$. $h = x_n - x_1$ is the interval length.

Proof Intuition for Interpolation Error Bound

Let us consider an interpolant \tilde{f} based on n=2 points so $\tilde{f}(x_1) = f(x_1)$ and $\tilde{f}(x_2) = f(x_2)$.

Prove the interpolation error bound in this case.

$$E(x) = p(x) - p(x)$$

$$E(x_1) = 0 \quad E(x_1) = 0$$

$$\int_{x_1}^{x_1} E'(x) dx = E(x_1) - E(x_1) = 0$$
What do ex that say about E' ?

(ase f' : If has a non-zone f' as f' a

$$E(x) = E(x_1) + \int_{x_1}^{x} E'(w_0) dw_0$$

$$= \int_{x_1}^{x} \int_{x_1}^{u_0} E''(w_1) dw_1 dw_2$$

$$= \int_{x_1}^{x} \int_{x_1}^{u_0} E''(w_1) dw_1 dw_2$$

$$= \int_{x_1}^{x} \int_{x_1}^{u_0} E''(w_1) dw_2$$

$$= \int_{x_1}^{x} \int_{x_1}^{u_0} C dw_1 dw_2$$

Making Use of Interpolants

Suppose we can approximate a function as a polynomial:

$$f(x) \approx a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

How is that useful? E.g. what if we want the integral of f?

Step1: Interpolate,
get poly nominal
p(x).

Step 1: Claim that
$$S_0' f(x) \wedge x \approx S_0' p(x) \wedge x$$
Step 3: 4. result $\approx \pi$

Demo: Computing π with Interpolation

More General Functions

Is this technique limited to the monomials $\{1, x, x^2, x^3, \ldots\}$?

Interpolation with General Sets of Functions

For a general set of functions $\{\varphi_1,\ldots,\varphi_n\}$, solve the linear system with the generalized Vandermonde matrix for the coefficients (a_1,\ldots,a_n) :

$$\underbrace{\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix}}_{V} \underbrace{\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}}_{\mathbf{a}} = \underbrace{\begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{pmatrix}}_{\mathbf{f}}.$$

Given those coefficients, what is the interpolant \tilde{f} satisfying $\tilde{f}(x_i) = f(x_i)$?

In-class activity: Interpolation

Outline

Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence	Repeating Linear Operations: Eigenvalues and Steady States Eigenvalues: Applications Approximate Undo: SVD and Least Squares SVD: Applications
Floating Point	Solving Funny-Shaped Linear
Modeling the World with Arrays	Systems
The World in a Vector	Data Fitting
What can Matrices Do?	Norms and Condition
Graphs	Numbers
Sparsity	Low-Rank Approximation
Norms and Errors	Iteration and Convergence
The 'Undo' Button for Linear	Solving One Equation
Operations: LU	Solving Many Equations
LU: Applications	Finding the Best: Optimization
Linear Algebra Applications	in 1D
1.7	O

Randomness: Why?

What types of problems can we solve with the help of random numbers?

We can compute (potentially) complicated averages.

- ► Where does 'the average' web surfer end up? (PageRank)
- ▶ How much is my stock portfolio/option going to be worth?
- ▶ How will my robot behave if there is measurement error?

Random Variables

What is a random variable?

A random variable X is a function that depends on 'the (random) state of the world'.

Example: X could be

- ▶ 'how much rain tomorrow?', or
- 'will my buttered bread land face-down?'

Idea: Since I don't know the entire state of the world (i.e. all the influencing factors), I can't know the value of X.

ightarrow Next best thing: Say something about the average case.

To do that, I need to know how likely each individual value of X is. I need a probability distribution.

Probability Distributions

What kinds of probability distributions are there?

Demo: Plotting Distributions with Histograms