Numerical Methods

CS 357 - Spring 2017

Andreas Kloeckner

Introduction

Numerical Methods: What?

- 'Numerical'?
- 'Method'?

Method? - Math idea - Possibly many algorithms differ in sountime () accuracy () efficiency Method = Mah + Alyonith + (ohnplexity / Effliciency + Accuran

Accuracy

• Why might a numerical method **not give the right answer?** (i.e. be inaccurate)

Demo: Waiting for 1

Numerical Experiments

Model:

- Small-scale behavior easy to describe
- Large-scale behavior desired, but hard to understand

~

Demo: Brownian Motion

Numerical Experiments

- What are we going to want to know about a numerical experiment?
 - What question are we trying to answer? - What answer did the experiment provide? (5 How confident one we in their answer, - flow expansive was the simulation? ~ flow does the exponse Vary? - Reproducible? Ropentalet? - Efficient?

Class web page

bit.ly/cs357-s17

- Assignments
 - ∘ HW0! ←
 - Pre-lecture quizzes C
 - In-lecture interactive content (bring computer or phone if possible)
- Exams 🧲
- Class outline (with links to notes/demos/activities/quizzes)
- Scribbles 🧲
- Virtual Machine Image
- Piazza

- PoliciesVideo
- Interactive Questions •
- Calendar
 - Office Hours 0

In-class activity: Complexity of Matrix-Matrix Multiplication

$$\begin{array}{l} \text{Jime (h)} & \textcircled{(h)} & \textcircled{(h)} \\ \text{Time (2n)} & \textcircled{(h)}^{3} \\ & = 2^{3} \cdot c \cdot h^{3} = 8 \cdot \text{Time(n)} \end{array}$$

Recap: Understanding Asymptotic Behavior, $O(\cdot)$ Notation

Demo: Cost of Matrix-Matrix Multiplication

- Can we say anything exact about our results?
- How do we say something exact without having to predict individual values exactly?

Making Predictions with $O(\cdot)$ -Notation

• Suppose you know that $Time(n) = O(n^2)$. And you know that for $n_1 = 1000$, the time taken was 5 seconds. Estimate how much time would be taken for $n_2 = 2000$.