$\operatorname{cs} 357$
In-class activity: Complexity of Matrix-Matrix Multiplication
Overview

- Biy O notation
- Pythr
- Building modeds

Recap: Understanding Asymptotic Behavior, $O(\cdot)$ Notation
Demo: Cost of Matrix-Matrix Multiplication

- Can we say anything exact about our results?
- How do we say something exact without having to predict individual values exactly?

$$
\begin{aligned}
& \text { Time }(n) \approx C \cdot n^{3} \\
& \text { Time }(n)=O(g(n))
\end{aligned}
$$

$\operatorname{mime}(n) \leqslant C \cdot g(n)$
as soon as

$$
n \geqslant n_{0}
$$

There exists
Suppose truth:

$$
\operatorname{Errov}(h)=O\left(h^{3}\right) \quad\binom{h<\infty}{h \rightarrow 0}
$$

Making Predictions with $\mathbf{O}(\cdot)$-Notation

- Suppose you know that $\operatorname{Time}(n)=O\left(n^{2}\right)$. And you know that for $n_{1}=$ 1000, the time taken was 5 seconds. Estimate how much time would be taken for $n_{2}=2000$.

Part 1:
 Models, Errors, and Numbers

1 Python, Numpy, and Matplotlib

Programming Language: Python/numpy

- Reasonably readable
- Reasonably beginner-friendly
- Mainstream (top 5 in 'TIOBE Index')
- Free, open-source
- Great tools and libraries (not just) for scientific computing
- Python 2×3 ? (3!)
- numpy: Provides an array datatype Will use this and matplotlib all the time.
- See class web page for learning materials
- Demo: Python
- Demo: numpy
- In-class activity: Image Processing

2 Making Models with Polynomials

