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Reconstructing a Function From Derivatives

Found: Taylor series approximation.

FO+2) ~ F(0)+ f(0)z + f';(‘))xz L

The general Taylor expansion with center g = 0 is
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Demo: Polynomial Approximation with Derivatives (Part I)



Shifting the Expansion Center

o Can you do this at points other than the origin? /
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Errors in Taylor Approximation (1)

o Can’t sum infinitely many terms. Have to truncate. How big of an error does
this cause?

Demo: Polynomial Approximation with Derivatives (Part I1)
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Making Predictions with Taylor Truncation Error

o Suppose you expand v/x — 10 in a Taylor polynomial(of degree 3 about the
center xg = 12. For hy = 0.05, you find that the Taylo iofi error is
about 1074
What is the Taylor truncation error for hy = 0.0257
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Demo: Polynomial Approximation with Derivatives (Part I11)



Taylor Remainders: the Full Truth

Let f: R — R be (n + 1)-times differentiable on the interval (zg,z) with f(®
continuous on [zg,x]. Then there exists @e (29, 8) so that
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and since [§ — xzg| < h
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Proof of Taylor Remainder Theorem

o Intuitively the error of an approximation that takes into account n derivatives
should be proportional to the maximum value of the (n + 1)th one...

In-class activity: Taylor series



Using Polynomial Approximation

o Suppose we can approximate a function as a polynomial:
~ 2 3
f(x) = ag + a1z + azx” + agx”.

How is that useful? Say, if | wanted the integral of f7

Demo: Computing m with Taylor



