

Switching Distributions for Sampling

Expected Value: Example II

Dealing with Unknown Scaling

What if a distribution function is only known up to a constant factor, e.g.

$$p(x) = C \cdot \underbrace{\left\{ \begin{array}{ll} 1 & \text{point } x \text{ is in IL,} \\ 0 & \text{it isn't.} \end{array} \right.}_{q(x)}$$

Typically $\int_{\mathbb{R}}q\neq 1.$ We need to find C so that $\int p=1,$ i.e.

$$C = \frac{1}{\int_{\mathbb{R}} q(x) dx}.$$

Idea: Use sampling.

Demo: Computing π using Sampling **Demo:** Errors in Sampling

Sampling: Error

The Central Limit Theorem states that with

$$S_N := X_1 + X_2 + \dots + X_n$$

for the (X_i) independent and identically distributed according to random variable X with variance σ^2 , we have that

$$\frac{S_N - NE[X]}{\sqrt{\sigma^2 N}} \to \mathcal{N}(0, 1),$$

i.e. that term approaches the normal distribution. As we increase $N,\,\sigma^2$ stays fixed, so the asymptotic behavior of the error is

$$\left|\frac{1}{N}S_N - E[X]\right| = O\left(\frac{1}{\sqrt{N}}\right).$$