Quaview

- FP
- Inclass
-
- LEF debnef (nex 70 uc$)$
- Examlet 2
(axtended!)
- HWY (onlsoon)

$1.23-10^{2}$
1.2345

$$
\hat{i}_{1}^{\text {Qum }}
$$

Universal number

$$
\begin{aligned}
& (1.1011)_{2} \cdot 2^{5} \\
\rightarrow & {[0.0100 \mid 10} \\
\rightarrow & 2^{3} \\
+0.0 .101 \mid & 2^{5} \\
\hline 10.0000 & 2^{5}
\end{aligned}
$$

Demo: Density of Floating Point Numbers
Demo: Floating Point vs. Program Logic

Floating Point and Rounding Error
What is the relative error produced by working with floating point numbers?
What is smallest floating point number >1 ? Assume /stored bits in the significand.

$$
y=1 \cdot \underbrace{0}_{i_{2^{-3}}^{0}} \frac{2^{0}}{r}=2^{-3}=2^{-3}
$$

What's the smallest FP number >1024 in that same system?

$$
y=1.0 .1 .20 . \quad \begin{aligned}
& 102 y=2^{10} \\
& \frac{y-1024}{102 y}=\frac{2^{10} \cdot 2^{-3}}{102 y}=2^{-3}
\end{aligned}
$$

Can we give that number a name?
value of lost digit of siguificana: machine epsilon

What does this say about relative enron?
Relative error in rambling to $F P_{i}$ machine epsilon

Implementing Arithmetic

How is floating point addition implemented?
Consider adding $a=(1.101)_{2} \cdot 2^{1}$ and $b=(1.001)_{2} \cdot 2^{-1}$ in a system with three bits in the significand.

Demo: Floating point and the harmonic series

Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude?
As an example, consider $a=(1.1011)_{2} \cdot 2^{0}$ and $b=(1.1010)_{2} \cdot 2^{0}$.
\checkmark

$$
\begin{array}{ll}
1000.1 & \\
1000 . y & \\
\hdashline 4 & 10^{-4}
\end{array}
$$

Demo: Catastrophic Cancellation
In-class activity: Floating Point 2

Outline


```
Repeating Linear Operations:
Eigenvalues and Steady States
Eigenvalues: Applications
Approximate Undo: SVD and
Least Squares
SVD: Applications
    Solving Funny-Shaped Linear
    Systems
    Data Fitting
    Norms and Condition
    Numbers
    Low-Rank Approximation
Iteration and Convergence
Solving One Equation
Solving Many Equations
Finding the Best: Optimization
in 1D
```

